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• Ship-borne GLUC measurements were
used for fecal pollution screening.

• GLUC screening maps indicated con-
taminant in-put on large water bodies.

• Surface water GLUC activity was pri-
marily related to hydrologic inputs.

• Human-dominated water sources are
key drivers of GLUC activity in surface
waters.
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This study used automated enzymatic activity measurements conducted from amobile research vessel to detect
the spatial variability of beta D glucuronidase (GLUC) activity in large freshwater bodies. The ship-borne observa-
tions provided the first high-resolution spatial data of GLUC activity in large water bodies as rapid indication of
fecal pollution and were used to identify associations with hydrological conditions and land use. The utility of
this novel approach for water quality screening was evaluated by surveys of the Columbia River, the Mississippi
River and the Yahara Lakes, covering up to a 500 km river course and 50 km2 lake area. The ship-bornemeasure-
ments of GLUC activity correlatedwith standard E. coli analyses (R2=0.71) and revealed the effects of (1) precip-
itation events and urban run-off on GLUC activity in surface waters, (2) localized point inlets of potential fecal
pollution and (3) increasing GLUC signals along gradients of urbanization. We propose that this ship-borne
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water quality screening to be integrated into future water inventory programs as an initial or complementary
tool (besides established fecal indicator parameters), due to its ability to provide near real-time spatial informa-
tion on potential fecal contamination of large surface water resources and therefore being helpful to greatly re-
duce potential human health risks.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Our current understanding of the microbiology of large water bod-
ies, especially concerning the fate, transport and pathways of microbial
pollutants, is predominantly based on assays that require extensive
sampling and laboratory analysis efforts, resulting in limited spatial
and temporal resolution (Cabral, 2010). Rivers and lakes receive dis-
charge from numerous and diverse sources, including urban, industrial
and agricultural areas that often contain pathogenic bacteria (Bradford
et al., 2013; Ferguson et al., 2003; Pachepsky et al., 2006). Waterborne
pathogens are a major issue of global concern and are the cause of
large disease outbreaks that affect human health and impair freshwater
systems (WHO, n.d.). Managing water resources to mitigate human
health risk is challenging, as microbial pollutants are spatially and tem-
porally heterogeneous due to variability among sources and complex
transport processes. Thus, health-related water quality research, as
well as the management, allocation and use of surface water resources,
would greatly benefit froman enhanced spatial and temporal resolution
of microbial parameters.

In recent years, various methods have been developed to detect or
indicate the presence of microbes or microbiological parameters on-
line and near real-time. These include on-site flow-cytometry (Besmer
et al., 2016, 2014), optical detection of suspended particles including
the differentiation between bacteria and particles (Højris et al., 2016),
indirect indicators of bacterial activity such as ATP (Vang et al., 2014)
or sensors directly sensing bacteria by contact with the sensor (Ji
et al., 2004; Park et al., 2014). Today, instruments using these technolo-
gies are already available on the market (e.g. ‘Bactosense’ by bNovate
Technologies (“Automated Flow Cytometry||bNovate Technologies,” n.
d.), ‘Bacmon’ by Grundfos (“BACMON automated bacteria monitoring
solution,” n.d.)). However, at the current state of the art, the specificity
of such on-site biosensor-based instruments is not sufficient for a real-
time monitoring of specific bacterial targets, such as bacteria indicating
fecal pollution (Deshmukh et al., 2016).

The detection of enzymatic activities has been proposed as a rapid
surrogate for specific microbiological water pollution monitoring
(Cabral, 2010; Farnleitner et al., 2001, 2002). Measurements of
beta D glucuronidase (GLUC) activity are significantly correlated to
the abundance of fecal indicator bacteria (FIB) E. coli in rivers
(Farnleitner et al., 2001, 2002), ponds (George et al., 2000) and
coastal waters (Fiksdal et al., 1994). The correlation is especially
strong for waters impacted by municipal sewage (Farnleitner et al.,
2001, 2002) and manure (Stadler et al., 2016). Therefore, the domi-
nant sources of GLUC activity in waters influenced by urban areas
are assumed to be wastewater treatment plant effluents (Hendricks
and Pool, 2012), the input of surface-associated fecal matter due to
urban run-off (McCarthy et al., 2012; McLellan et al., 2007) and
feces of small mammals inhabiting drain pipes in some locations
(such as raccoons (Bondo et al., 2016)). Leaking sewer lines may be
a significant diffuse source of untreated wastewater, even reaching
storm drains in municipalities with separate storm and sanitary
sewer systems (Sercu et al., 2011, 2009). In agricultural areas, the
dominant source of GLUC activity in waters is assumed to be inputs
of livestock feces or slurry manure application on crop fields
(Bradford et al., 2013; Farnleitner et al., 2011; Pachepsky et al.,
2006). A relevant source of FIB, and consequently GLUC, at lake
beaches can be water birds, such as geese (McLellan and Salmore,
2003; Meerburg et al., 2011; Whitman and Nevers, 2004). While
GLUC activity is predominantly correlated with the abundance of
FIB E. coli in water, cross-sensitivities, as well as interferences of en-
zymatic activity by non-fecal compounds, such as algae or organic
matter, have been studied previously (Biswal et al., 2003; Fiksdal
and Tryland, 2008). Although these mechanisms of interference
may limit the usefulness of GLUC as a surrogate to quantify E. coli,
they were shown to be less important in terms of the applicability
of GLUC as a qualitative indicator for fecal pollution of water re-
sources (Ender et al., 2017; Koschelnik et al., 2015; Ryzinska-Paier
et al., 2014; Stadler et al., 2016).

Automated on-site measurements of enzymatic activity are now
technically feasible and have been used for near real-time indication
of microbiological contamination in a variety of aquatic monitoring sta-
tions, ranging frompristine groundwater (Ryzinska-Paier et al., 2014) to
sediment-laden surface waters (Ender et al., 2017; Stadler et al., 2016).
While these prior efforts have been extremely useful in assessing tem-
poral enzymatic dynamics in single locations (Ender et al., 2017;
Stadler et al., 2016), the utility of these automated tools would increase
significantly if they could also be applied across large areas to address
the pronounced spatial heterogeneity in microbial pollution within
and among individual water bodies. Thus, the goal of our study was to
assess the spatial variability of enzymatic activity in surface waters for
the first time by means of rapid and automated GLUC activity measure-
ments from a mobile research vessel. Specifically, we ask: (a) can auto-
mated measurements of GLUC activity serve as an indicator for fecal
pollution of large water bodies?; and (b) what are the spatial patterns
of GLUC activity within an individual lake or river and are they related
to land use and hydrological dynamics? The surveys presented here ex-
emplify a novel approach for water quality screening of inland waters
and are focused on gaining a better understanding of the spatial pat-
terns in water quality, as well as the fate of fecal indicators in surface
waters. Suggestions for further applications in environmental science,
water management and early warning systems are provided.
2. Material and methods

2.1. Rapid determination of GLUC activity

The rapid GLUC on-site assay is based is on specific bacterial hydro-
lysis of the substrate 4 methylumbelliferyl β D glucuronide (MUG) and
fully automated fluorescence detection (excitation: 365 nm, emission:
455 nm) of the enzymatic reaction product 4 methylumbelliferone
(MU) (“Enzymatic Assay of β-Glucuronidase (EC 3.2.1.31) From E. coli
[WWW Document],” n.d.; Fishman and Bergmeyer, 1974). The auto-
matedmeasurementswere performed in batches using 6.5ml of sample
per measurement, and a flow-through photometric measurement-
chamber enabled a high-resolution fluorescence analysis of the enzy-
matic reaction product MU. The measurement step takes 15 min and
the assay has been calibrated to Modified Fishman Units (MFU/
100 ml), based on the enzyme unit definition for beta D glucuronidase
activity (Fishman and Bergmeyer, 1974). The prototype used for auto-
mated and mobile GLUC measurements in this study was housed in a
weatherproof case suitable for on-site and outdoor operation. The con-
struction and function of the same prototype design have been de-
scribed in detail by Koschelnik et al., 2015 and Stadler et al., 2016.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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To assess the applicability of rapid GLUCmeasurements as an indica-
tor for E. coli, a sample campaign was initiated during July 2016. Water
samples (n = 18) from different beaches of the Madison Lakes (de-
scribed below) were analyzed with both a defined substrate ISO 9308-
2:2012 assay (IDEXX Colilert18®) and the prototype that was deployed
for the ship-borneGLUCmeasurements. The sampleswere taken during
theweeklywater qualitymonitoring program of public beaches in Dane
County, conducted during swimming season by Public Health Madison
and Dane County (“Madison, and Dane County Beaches - Water Quality
- Public Health - Madison, and Dane County - City of Madison, Wisconsin
[WWW Document],” n.d.).

2.2. Instrumentation

The essential technical base for this study was the Fast Limnology
Automated Measurement (FLAMe) platform described by Crawford
et al., 2015. The core feature of the FLAMe is a flow-through system
that allows for ship-borne sampling (temporal resolution of up to
1 Hz) of inland waters at both low and high speeds. A high output dia-
phragm pump delivers surface water (from approx. 20 cm below
water level) to an array of sensors mounted inside the boat, including
a YSI EXO2 multiparameter sonde (temperature [°C], pH, specific con-
ductivity (SPC; [μS/cm]), turbidity [FNU], fluorescent dissolved organic
matter (fDOM; [RFU]), and chlorophyll a [μg/l]) and a Satlantic SUNA
V2 optical nitrate analyzer (nitrate (NO3-N [mg/l])). The FLAMe can in-
tegrate additional sensors with simple modifications. In this study, we
used a peristaltic pump to deliver water immediately and unaltered
(upstream of the sensors and diaphragm pump) from the lake or river
to a prototype instrument capable of rapidly measuring GLUC activity
of waters. All measurements were georeferenced with an onboard GPS
(WAAS enabled), time-corrected based on internal flow rates and sen-
sor response times, and merged using time stamps (R Core Team,
2016). All sensors and equipment for ship-borne measurements were
powered by 12 V DC on-board power and batteries.

2.3. Data interpretation

The aim of the presented research is to provide amethodology for an
initial, rapid and complementary assessment of the spatial patterns of
potential fecal pollution across large water bodies. The described ap-
proach does not intend to replace any establishedmicrobial fecal indica-
tors, but shall enable a rapid overview to support amore purposeful and
resourceful study design on large or understudied water bodies (e.g. lo-
calization of strategic sample points).

To visualize GLUC spatial patterns, we generated maps across the
water surfaces using an inverse distance weighting (IDW) algorithm
(QGis Development Team, 2009). GLUC activity was measured every
15 min, and measurements were assumed to be independent (calcu-
lated Moran's I for all sites b 0.08, Anselin et al., 2006) such that all
data were used for interpolation. We note that the presented GLUC ac-
tivity maps are estimated values across each water body and are
intended for qualitative screening proposes, rather than for a quantita-
tive determination of GLUC values over the sampled water body.

To assess drivers of GLUC activity, a comparison of the point mea-
surements of enzymatic activity with simultaneously quantified limno-
logical variables was used for an enhanced data interpretation with
respect to contaminant pathways and transport processes. Correlations
between GLUC activity and the isochronal measured limnological vari-
ables were examined using linear regression analyses.

2.4. Test sites and survey details

To evaluate the utility of rapid GLUCmapping across a range of envi-
ronmental conditions, we used three distinct study systems: the Yahara
lakes, a midwestern U.S. chain of lakes embedded in an agricultural and
urban landscape; the Lower Columbia River in the northwestern U.S.,
which drains a catchment with pronounced climatological and land
use variation and includes both impounded (reservoir) and free-
flowing reaches; and a large, physically variable navigational pool
within the Upper Mississippi River. Within the Yahara lakes, mapping
was done within the first lake (Lake Mendota) as well as between
lakes to further evaluate patterns of enzymatic activity and relation-
ships between GLUC and other water chemistry parameters at different
spatial scales.

2.4.1. Lake Mendota
Lake Mendota is a medium sized eutrophic lake located in Wiscon-

sin, USA (Table 2). The lake has been the subject of many studies in
aquatic ecology and limnology over several decades (Brock, 2012;
Bryson and Suomi, 1952; Carpenter et al., 2007; Jones et al., 2012) and
is regularlymonitored by theNorth Temperate Lakes Long TermEcolog-
ical Research (NTL-LTER) program.With a surface area of 39.9 km2, it is
the largest and northernmost lake in a chain of four lakes on the Yahara
River (Brock, 2012). Tributaries flowing into the lake's northern bay
drain predominately agricultural watersheds. Urban areas (including
the City of Madison) are located in the immediate surroundings of the
lake and route stormwater run-off directly into the lake. The lake is a
popular recreation site and several public beaches are monitored
weekly for FIB and cyanobacteria toxins during swimming season by
Public Health Madison and Dane County (“Madison, and Dane County
Beaches - Water Quality - Public Health - Madison, and Dane County -
City of Madison, Wisconsin [WWW Document],” n.d.). The dominant
pathways and sources of GLUC activity for Lake Mendota are hypothe-
sized to be: (a) tributaries draining urban and agricultural catchments
(in the northern part of the lake), (b) leaks from sanitary sewers,
(c) geese inhabiting recreational beaches and (d) fecal contamination
fromdiffuse urban sources that reaches the lake via storm drains during
storm run-off conditions (in the southern part of the lake).

To assess the impact of hydrological events on the spatial patterns of
GLUC in lake water (Table 1), we conducted three surveys on the lake.
Each tour lasted 3 h when motor-boating at ~50 km/h. Our goal was
to achieve a representative distribution of GLUC measurements over
the lake area but also to capture specific locations of interest, such as
the confluences of the Yahara River (north shore), Pheasant Branch
Creek (WNW shore), and a discharge point of a stormwater run-off
channel (south shore). We sampled the lake on three dates that varied
with respect to time since precipitation, from 7 h to 6 days after an
event. Yahara River discharge and precipitation data for these periods
were derived from the USGS stream gauge #05427850 (Yahara River
at State Highway 113).

To determine the effects of urban runoff on the GLUC activity of lake
water, one spatial survey, focused in detail on the highly urbanized
south shore of Lake Mendota (Table 1).

2.4.2. Yahara Lakes
Continuing downstream from Lake Mendota, the Yahara River flows

first into Lake Monona and then Lake Waubesa (Brock, 2012). These
lakes are smaller than Lake Mendota, with surface areas of 13 and
8 km2, respectively. While the northern part of LakeMendota primarily
receives water from agricultural watersheds, the proportion of urban
areas relative to the catchment size increases moving down the lake
chain (ratio lake size to neighboring urban area: 1:2 for Lake Mendota,
1:4.6 for Lake Monona and 1:5 for LakeWaubesa). The dominant path-
ways and sources of GLUC activity for the chain of lakes are hypothe-
sized to be similar to those described for Lake Mendota, but with an
increasing influence of urban sources downstream.Wenote thatwaste-
water from the greater Madison metropolitan area is routed down-
stream of the Yahara lake chain.

A one-day measurement-tour followed the Yahara River down-
stream from its confluence at the north end of Lake Mendota, through
Lake Monona and further into Lake Waubesa (Table 1).



Table 1
List of surveyedwater bodies. Including key facts such as focus of the survey,water body type, location, dates, weather,measured area and length, number of conductedmeasurements and
distance between measurement points.

Focus of
survey

Water body Type Location Date of surveys Number
of
surveys

Weather
during
surveys

Measured
stretch
(rivers), area
(lakes)
per survey

Total number
of
GLUC
measurements

Distance
between
GLUC
measurements

Hydrological
events

Lake Mendota Lake Wisconsin, USA June 21st, June 29th, July
6th, 2016

3 Dry -
rain

40 km2 38 1.5 km

Urban run-off Lake Mendota Lake Wisconsin, USA June 21st, 2016 1 Dry 4 km2 17 0.5 km
Land use Yahara Lakes Lake Wisconsin, USA June 29th, 2016 1 Dry 50 km2 23 1.7 km
Land use Lower Columbia River

(LCR)
River Oregon/Washington,

USA
July 12th–18th, 2016 1 Dry 500 km 80 6.0 km

Land use Upper Mississippi River
(UMR)

River Wisconsin/Minnesota,
USA

August 3rd, 2016 1 Dry 50 km 23 3.5 km
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2.4.3. Columbia River
The Columbia River is the fourth largest river (by flow) in North

America. For the last ~200 km, the Lower Columbia River (LCR) forms
the border of Washington and Oregon, ultimately discharging into the
Pacific Ocean. Much of the river has been heavily modified by dam con-
structions, and the river serves as a navigation route and is a significant
source of hydroelectrical power and irrigation. The eastern part of the
LCR basin is characterized by an arid high-desert environment and is di-
vided by the CascadeMountain Range from thewet and intensively for-
ested coastal part of the basin. In the eastern LCR watershed, irrigation
supports agriculture; e.g., in the Umatilla and Yakima River basins. The
western LCR includes large population centers (such as Portland, OR)
in addition to amixture of agriculture and forest land uses.Microbiolog-
ical studies in the LCR basin have primarily focused on tributaries and
the estuary (Crump et al., 1999; Cuffney et al., 2000). The LCR was cho-
sen as a test site because of its variability in climate and land use along
the river course. The dominant sources and pathways of GLUC activity
into the LCR are assumed to be both from agricultural and urban
areas. Primary agricultural sources of GLUC are hypothesized to be
areaswith livestock, particularly for the Yakima and the Umatilla basins
(Cuffney et al., 2000; Leland, 1995). Urban sources of GLUC are as-
sumed to be dominated by the input of wastewater treatment
plant effluents into the LCR and its tributaries from population cen-
ters, such as Richland, Pasco, Hermiston, The Dalles and Portland
(Wünsch et al., 2016).

A surveywas conducted on the primary channel of the LCR (Table 1)
The research vessel was navigated into select tributaries, including the
Snake, Yakima, Umatilla, John Day and Willamette Rivers. A short seg-
ment of the LCR (between theDalles and Bonneville Dams)was not sur-
veyed because it was not safely navigable due to strong winds and high
waves. More information describing this survey can be found in
Crawford et al., 2017.
Table 2
Limnological variables andGLUCactivities for LakeMendota, Lower Columbia River andUpperM
ber of measurements).

Lake Mendota Lower Co

June 21, June 29, & July 6 July 12–Ju

Median (Min–max) n Median

Temperature [°C] 24.6 (22.4–27.3) 31,153 20.1
Turbidity [FNU] 2.4 (0.3–19.9) 31,148 1.5
SPC [μS/cm] 521 (345–796) 31,153 127
pH 8.4 (7.5–8.7) 31,151 8.0
NO3-N [mg/l] 0.26 (0.10–2.05) 1718 0.11
Chlorophyll a [μg/l] 2.0 (0.4–56.7) 31,153 1.0
fDOM [RFU] 7.8 (6.0–29.6) 31,153 0.0
GLUC [mMFU/100 ml] 6.2 (b0.8–32.9) 38 1.8
2.4.4. Mississippi River
The Mississippi River is the largest river in North America, draining

parts of 37 U.S. states before discharging into the Gulf of Mexico. The
Upper Mississippi River (UMR) drains one of the most intensively
used agricultural regions in the world (NRCS, 2012 “Corn Belt”),
known as the U.S. Corn Belt. Heavily impacted by agricultural runoff,
the UMR has been the subject of studies focusing on nutrient controls
and dynamics as well as greenhouse gas emissions (Crawford et al.,
2016; Pellerin et al., 2014; Turner et al., 2016). A system of low-head
locks and dams facilitate navigation through the UMR. The dams divide
the river into “Pools”, which encompass a variety of aquatic habitats, in-
cluding primary channels, side channels, impounded areas, and back-
waters. We surveyed Pool 8, which is an ~50 km section of the UMR
near the city of La Crosse, Wisconsin (Table 1). Limnological variables
of this pool offer a strong contrast to the LCR (Table 2). The sources
and pathways of GLUC activity into Pool 8 of the UMR are hypothesized
to be dominated by inputs from agricultural areas from upstream
sources of the primary stem and tributaries discharging directly into
Pool 8, such as the La Crosse and Root Rivers. Relevant urban sources
of GLUC are assumed to be the effluents of wastewater treatment facil-
ities of population centers upstream of Pool 8 (such as Minneapolis) as
well as the city of La Crosse adjacent to Pool 8.

3. Results

3.1. Correlation of GLUC activity and conventional E. coli analyses

Grab samples of lake water from different beaches of the Madison
Lakes were analyzed in the laboratory with both a defined substrate
ISO 9308-2:2012 assay (IDEXX Colilert18®) and the same prototype
that was deployed for the ship-borne GLUC measurements. These anal-
yses showed a positive correlation (R2 = 0.71, p b 0.001, n = 18)
ississippi Rivermeasured during the presented surveys (including confluences, n=num-

lumbia River Upper Mississippi River

ly 18 Aug 3

(Min–max) n Median (Min–max) n

(17.7–28.5) 90,596 27.3 (25.1–30.39) 22,720
(0.0–9.7) 90,596 6.1 (1.1–25.95) 22,718
(87–419) 90,596 371 (210–549) 22,720
(7.4–9.7) 90,596 7.5 (6.9–8.3) 22,720
(0.02–4.14) 8126 2.49 (0.0–5.44) 1898
(b0.1–348.3) 90,596 13.0 (3.8–92.1) 22,720
(b0.1–24.5) 90,596 28.8 (0.79–30.65) 22,720
(b0.8–20.3) 80 7.5 (5.0–15.0) 23



Fig. 1. The correlation of GLUC activity with conventional E. coli analyses. Samples were
collected from lake water near beaches on Lake Mendota, Lake Monona and Lake
Waubesa. The observed R2 of 0.71 demonstrates the applicability of rapid GLUC
measurements to indicate E. coli contamination (n = 18, p-value b 0.001).
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between rapid GLUC activity measurements and results from defined
substrate-based E. coli analyses (Fig. 1). During the summer season
2016 E. coli levels ranged from b10 to 1900 MPN/100 ml at Lake
Mendota, from b10 to N24,000 MPN/100 ml at Lake Monona and from
b10 to 11,000 MPN/100 ml at Lake Waubesa beaches, respectively
(data not shown). The beach closure limit is 1000 MPN/100 ml. Grab
samples are collected from shallow water to evaluate the risk for kids.
In general E. coli results decline with depth.

3.2. Influence of hydrological events on the GLUC activity of lake water

Depending on the time since the last precipitation event and its in-
tensity, the GLUC activity of lake water showed distinct spatial variabil-
ity (compare Fig. 2A, B, C and D, E, F). While the deep central basin of
Lake Mendota had GLUC values close to the limit of detection
(0.8mMFU/100ml), higher valueswere observed along the shore, espe-
cially at confluences (Yahara River up to 32.9 mMFU/100 ml). Major
variation of the GLUC activity was observed in the river-lake transition
zone of the Yahara River. When we sampled promptly after a rain
event (Fig. 2B, C and E, F), the Yahara River GLUC plume extended fur-
ther into the lake compared to sample dates after longer periods of no
rain (Fig. 2A and D). Elevated GLUC values were observed for all water
sources (including Pheasant Branch Creek and the storm drainage on
the south shore) just hours after an intense local storm event
(Fig. 2C). In Lake Mendota, GLUC activity had the strongest correlation
with turbidity (R2 = 0.60, p b 0.001) and fDOM (R2 = 0.58, p b 0.001)
(Table 3).

3.3. GLUC activity in urban lake water

The south edge of LakeMendota, which was adjacent to a highly ur-
banized area, had maximum GLUC values immediately adjacent to a
storm drain and near the lake's outlet (during dry weather conditions
up to 5.0 mMFU/100 ml) (Fig. 3) Within this urban transect, SPC and
GLUC activity were negatively correlated (Fig. 3C, R2= 0.73, p b 0.001).

At the larger between-lake scale, we observed an increase in GLUC
activity along the gradient of increasing urbanization across the Yahara
Lakes chain (Fig. 4). During dry weather conditions, GLUC activity was
elevated in the Yahara River confluence zone at 28.7 mMFU/100 ml
but settled to an average baseline level within Lake Mendota of
4.1 mMFU/100 ml (STDEV = 1.2). Continuing down the lake chain,
the mean GLUC activity increased to 7.3 (STDEV = 2.8) and 9.7
(STDEV= 2.3) mMFU/100 ml for Lake Monona and Lake Waubesa, re-
spectively. Step increases in GLUC activity (up to 13.3 mMFU/100 ml)
corresponded to sections of the lakes that received inputs from distinct
urban sources, such as storm drains or small urban tributaries that
underwent limited mixing with the rest of the lake system (Fig. 4).
Across the three lakes, GLUC activity showed strongest correlations
with chlorophyll (R2 = 0.86, p b 0.001) and NO3-N (R2 = 0.80, p b

0.001) (Table 3).

3.4. Allochthonous sources affecting GLUC activity in rivers

GLUC values along the LCR and selected tributaries (Fig. 5) ranged be-
tween b0.8 and 20.3 mMFU/100 ml, with a mean of 2.8 mMFU/100 ml
and a median of 1.8 mMFU/100 ml (Table 1). Over long stretches, espe-
cially upstreamof the JohnDay River confluence, GLUC valueswithin the
LCR primary channelwere predominately close to the limit of quantifica-
tion (0.8mMFU/100ml). High GLUC valueswere observed at the conflu-
ences of the Yakima River (20.3 mMFU/100 ml) and the Umatilla River
(15.5 mMFU/100 ml), both of which drain agricultural areas (Fig. 5).
We observed GLUC values up to 7.3 mMFU/100 ml in the Willamette
River as it passed through the highly urbanized area of Portland, OR
(Fig. 5). Three major sections of distinct GLUC activity could be recog-
nized along the entire LCR transect. The upper stretch (median:
0.9 mMFU/100 ml) between Richland and Biggs Junction was character-
ized by low GLUC values in the main channel that were interrupted by
brief but high peaks due to tributaries from agricultural areas. A middle
section (median: 2.0mMFU/100ml) between the JohnDay River conflu-
ence andWillamette River confluence had an increased GLUC activity in
the main channel compared to the upper stretch, although local in-
creases associated with tributaries were less pronounced. Finally, the
lower section (median: 3.5 mMFU/100 ml), associated with the City of
Portland,was characterized by furtherGLUC increases that corresponded
to increasing amounts of waters from urban and agricultural areas accu-
mulating downstream. GLUC measurements decreased in the reach of
the Dalles Dam from 3.7 to 1.7mMFU/100ml along the length of the im-
poundment (Fig. 5).

GLUC activity in the LCR was most strongly correlated with chloro-
phyll (R2 = 0.55, p b 0.001) and fDOM (R2 = 0.38, p b 0.001)
(Table 3). In the fairly homogenous main channel of the LCR, GLUC ac-
tivity was associated with tributary inlets, which tend to have higher
SPC than the main LCR channel (SPC vs GLUC: R2 = 0.32, p b 0.001).

Within the UMR, GLUC values in Pool 8 and select confluences ranged
between 5.0 and 15.0 mMFU/100 ml, with a mean of 8.0 mMFU/100 ml
and a median of 7.5 mMFU/100 ml (Fig. 6, Table 1). Maximum GLUC
signals were recorded at the confluences of the La Crosse River
(15.0 mMFU/100 ml) and the Root River (13.7 mMFU/100 ml), as both
of these tributaries drain agricultural catchments. GLUC values were con-
sistently higher in the UMR compared to the LCR (Figs. 5 and 6), corre-
sponding to a greater proportion of agricultural and urban land use in
its watershed. Spatial variability of GLUC activity was greater within the
50-km survey section of the UMR (range of GLUC values excluding
tributaries: 5.6 mMFU/100 ml), compared with the almost 500 km sec-
tion surveyed at the LCR (range of GLUC values excluding tributaries:
4.1 mMFU/100 ml). The correlation with GLUC activity was negative for
fDOM (R2 = 0.65, p b 0.001) and positive for turbidity (R2 = 0.48, p b

0.001). Tributaries had lower fDOM and higher GLUC activity compared
to Pool 8.

4. Discussion

4.1. Indicator applicability of GLUC activity

The significant correlation between GLUC and FIB observed for lake
water is concordant to previous sampling campaigns conducted at sur-
face water monitoring stations (Ender et al., 2017; Stadler et al., 2016).
The results of this sampling campaign point out the potential of rapid
GLUC measurements to indicate microbial fecal pollution of water re-
sources. It has been reported that E. coli can survive in the environment
and therefore be sourced from nonfecal and environmental sources



Fig. 2.GLUCactivity screeningmaps of LakeMendota on the left (A, B, andC) show thediverse spatial patterns of GLUC activity on the lake depending on time since last precipitation event.
On the right (D, E, and F) the corresponding discharge of the Yahara River (blue line), precipitation amount (blue bars) and date of survey (red bar) are shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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(Byappanahalli et al., 2003; Garzio-Hadzick et al., 2010; LaLiberte and
Grimes, 1982; Lau and Ingham, 2001) which impacts its fecal indicator
applicability significantly. We cannot exclude that the results shown
here are not affected by an environmental growth of E. coli.

Regarding interference effects between algae and GLUC, we empha-
size that the presented surveys aimed for a qualitative water quality
Table 3
Correlation (linear regression) R2 between GLUC activity and limnological variables for the sur
value b 0.005, *: p-value b 0.05, n = number of measurements). A negative correlation is indic

Lake Mendota Yahara Lakes

GLUC vs. n R2 p n R2

Turbidity [FNU] 38 0.60 *** 23 0.41
SPC [μS/cm] 38 0.04 23 0.00
fDOM [RFU] 38 0.58 *** 23 0.68
Chlorophyll a [μg/l] 38 0.35 *** 23 0.86
NO3-N [mg/l] 24 0.16 * 23 0.80
screening. Thementioned cross sensitivities between GLUC and organic
matter may limit the quantitative validity of the absolute GLUC values
presented. However, several recent studies conducted in various
aquatic habitats all showed that a relative increase of GLUC activity is ca-
pable to indicate a potential microbial contamination in waters (Ender
et al., 2017; Stadler et al., 2017, 2016).
veyed water bodies. Star code indicated the significance level (***: p-value b 0.001, **: p-
ated by (−).

Lower Columbia River Upper Mississippi River

p n R2 p n R2 p

*** 80 0.25 *** 23 0.48 ***
80 0.32 *** 23 0.20 *

*** 80 0.38 *** 23 (−) 0.65 ***
*** 80 0.55 *** 23 0.17 *
*** 80 0.26 *** 23 0.00



Fig. 3. SPC (A) and GLUC activity (B) screeningmaps along an urban shoreline of Lake Mendota showing SPC and GLUC activity at a storm drain and near a park at the lake's outlet (goose
symbol). GLUC activity in lake water neighboring the City of Madison was negatively correlated with specific conductivity (C, R2 = 0.73, n = 17, p-value b 0.001).
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4.2. GLUC activity in lake water

Hydrological processes were determined to be the primary driver of
spatial GLUC heterogeneity in Lake Mendota. GLUC signals were deter-
mined predominantly by the influence of tributaries and confluences
on the receiving water body, rather than in-lake processes (such as
thermal- or wind induced mixing, browning or local aggregations of
algae). As turbidity and fDOM are derived from tributaries, the associa-
tion of these parameters with GLUC activity is interpreted as the domi-
nant influence of rivers, such as the Yahara River, on theGLUC activity of
LakeMendota. The rivers thatflow into the lake's northern bay drain ag-
ricultural catchments that support row crop and dairy farms, and thus
carry large suspended sediment and nutrient loads and presumably
contain fecal pollution from livestock waste, especially during high
flow (Kitchell, 2012; Lathrop et al., 1998). In terms of indicator applica-
bility of GLUC for a potential fecal pollution the series of three surveys
conducted during different times after rain events, can be interpreted
as positive and negative control: During high flow, shortly after a
storm we assumed increased FIB levels in stream water (such as the
Pheasant Branch Creek). The survey conducted on July 6th enabled a
positive control, as high GLUC values above 20 mMFU/100 ml were re-
corded in the western part of the lake (Fig. 2C). During low flow we
Fig. 4. On the left, GLUC activity screening map along a gradient of urbanization following the
Waubesa. Areas that are assumed to contribute significant amounts of urban run-off are marke
assume a minimal fecal contamination of the Pheasant Branch Creek.
The survey conducted on June 21st, during dry weather enabled a neg-
ative control when GLUC values below 10 mMFU/100 ml were mea-
sured in the same area.

4.3. Influence of urban run-off on GLUC activity

The negative correlation of SPC and GLUC within the urban bay of
LakeMendota is interpreted as an indicator for urban run-off. Following
the last rain event, the low-SPC overlandflowhad yet to completelymix
with lake water, leading to localized areas of low SPC water near the
shore (Fig. 3A). These areas with low SPC were associated with higher
GLUC activity, supporting the assumption that the presence of FIB in
the lake is predominantly caused by inputs of allochthonous water,
likely urban runoff following heavy precipitation. The increased GLUC
values at the confluence of the storm-drainage (Fig. 3B) were likely
due to urban drainage water. The second area of high GLUC activity is
adjacent to a public park where geese frequently congregate (Heftey,
2011) (Fig. 3B, goose symbol), thus bird feces were the likely source of
fecal contamination.

Strong correlations between GLUC activity, chlorophyll and NO3-N
were determined along a gradient of urbanization along the chain of
chain of the Madison Lakes downstream through Lake Mendota, Lake Monona and Lake
d as drainage area 1 and drainage area 2.



Fig. 5.GLUC activity screeningmap (top), shows GLUC activity in the LCR and its confluences. The graph on the bottom shows the corresponding course of GLUC activity, showing peaks of
GLUC activity due to tributaries and population centers, a decrease of GLUC values within the reach of The Dalles Dam and an increase of GLUC activity in the LCR heading downstream.
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lakes. We believe this correlation was a consequence of hydrologic
transport leading to parallel signals. Nutrients promoting algae growth
reach the lower lakes via storm drainages and surface runoff. Fecal pol-
lution from pet waste or urbanwildlife and suburban drainage areas, as
well as leaking sewer lines, migrate along the same pathway, leading to
similar spatial patterns.
4.4. GLUC activity in rivers

Tributaries draining agricultural and urban areas were the predom-
inant driver of the spatial patterns of GLUC activity in both the LCR and
the UMR. Anthropogenic influences were indicated by the association
between GLUC activity and nutrients, fDOM and consequently chloro-
phyll. The association of GLUC with turbidity is interpreted as a result
of the influence of tributaries draining agricultural catchments suscepti-
ble to soil erosion that are likely to deliver fecal contamination from
livestock waste.

The higher variability of GLUC activity in the UMR, compared to the
LCR, is assumed to be a consequence of the braided fluvial network of
backwaters and side channels and has been reported for a variety of
other variables, such as nutrients, carbon gases and aquatic macro-
phytes (Crawford et al., 2016, 2015; De Jager and Houser, 2012;
Houser and Richardson, 2010).

A potential influence of river impoundments on the fate of GLUC ac-
tive organisms has been recorded in the LCR within the impoundment
of the Dalles dam. The retention of particle-associated microorganisms
due to increased sedimentation within impoundments has been re-
ported (Gannon et al., 1983) and is a plausible explanation for the
observed decrease of GLUC activity within the impoundment of the
Dalles dam.
4.5. Capability of ship-borne GLUC measurements

Preventing human exposure to water-borne pathogens and provid-
ing better insights into the fate and transport of fecal indicators are chal-
lenging tasks to which ship-borne GLUC measurements can contribute.
We have been able to demonstrate that ship-borne GLUC measure-
ments are a promising screening tool that can provide near real-time
maps that indicate fecal E. coli contamination of water resources. The
ship-borne strategy can give an initial overview on the microbial vari-
ability at understudied sites and allow a more purposeful selection of
sampling locations. This tool can improve health-related surveillance
of waters and potentially lead to faster decision-making and manage-
ment actions (e.g., beach closures). High spatial resolution GLUC mea-
surements are also valuable for contaminant transport models. The
GLUC values presented in this study were consistent with previously
published studies, ranging between nearly unpolluted groundwater
(Ryzinska-Paier et al., 2014) and surface waters impacted by munic-
ipal sewage (Farnleitner et al., 2002; Garcia-Armisen et al., 2005;
George et al., 2000) and manure (Stadler et al., 2016). However, as
a tool to replace conventional microbiological assays, we urge cau-
tion; a reasonable correlation between GLUC and E. coliwas observed
for lake water, but this is below the 0.95 threshold required for proxy
parameters (Stadler et al., 2010). We encourage following up these
enzymatic activity screening surveys with additional culture-based
methods.



Fig. 6. On the left, GLUC activity screening map of Pool 8 of the Upper Mississippi River (UMR), showing the influence of the La Crosse and the Root Rivers, both draining agricultural
catchments. The graph on the right shows the corresponding course of GLUC activity, showing peaks of GLUC activity due to the tributaries.
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4.6. Expanded developments and future perspectives

To ask ecological questions that go beyond fecal microbial con-
tamination, the chemical enhancement of available substrates (in
terms of e.g. temperature stability of MUG) and the preparation
and application of new substrates will enable a more diverse assess-
ment of enzymatic activities in waters. Developments of buffers and
reagents are underway to allow automated enzymatic assays in sa-
line environments.
5. Conclusions

Surface water GLUC activity varied among the study sites and was
primarily related to hydrologic inputs. More specifically, our surveys
point to human-dominatedwater sources as key drivers of GLUC activity
in surfacewaters. The comparison between the LCR and the Yahara Lakes
highlighted increasing downstream GLUC signals that corresponded to
greater anthropogenic influences in both systems. In general, each sys-
tem had different correlations between GLUC and limnological variables,
but the results from all surveys point to externally derived GLUC, indi-
cated by abrupt changes in water chemistry associated with tributaries
and other water sources. For future studies, we do not recommend
using these correlations to predict GLUC activity, but rather to use
them to infer distinct water masses that may differ in their microbial
quality.

The ship-borne approach of combining rapid microbial methods
with limnological observations described in this study is not constrained
to enzymatic assays: In general, we see the integration of emerging
rapid microbiological on-line methods into platforms for ship-borne
measurements of physicochemical variables as a powerful methodology
to improve data interpretation and process understanding within the
fields of aquatic ecology, health-related water quality and water re-
source management.
Notes
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