

Tracking the contribution of multiple treated wastewater and CSO discharges at drinking water intakes by online *E. coli* monitoring

Jean-Baptiste Burnet, Émile Sylvestre, Mounia Hachad, Pierre Servais, Sarah Dorner, Michèle Prévost

Water Quality Technology Conference 2018 - Toronto, Nov 12-15, 2018

Protecting surface water for health

- Drinking water supplies
 - Surface water impacted by increasing anthropic pressures
 - Water safety plans multi-barrier approach for safe drinking water supply
 - 1st barrier: selection and protection of drinking water sources
- Monitoring of source water quality
 - Low frequency, long sample-to-result time
 - Inappropriate for microbial hazard identification
- Need to better understand the source
 - Online, rapid, accurate and user-friendly and methods
 - Guide for hazard identification, source appointment
 - Early warning tool for intermittent contamination events

PROTECTING
SURFACE WATER
FOR HEALTH

IDENTIFYING, ASSESSING AND MANAGING DRINKING-WATER QUALITY RISKS IN SURFACE-WATER CATCHMENTS

WHO, 2016

Escherichia coli monitoring 2.0

Measurement of β-D-glucuronidase (GLUC) activity

Autonomous

Online

Near real-time

Objectives

- Using near real-time monitoring of GLUC activity (E. coli)
 - 1. Characterize temporal scales of *E. coli* dynamics in an urban drinking water supply
 - 2. Identify periods of microbial challenge for drinking water intakes
 - 3. Investigate the cumulative impact of water resources recovery facilities (WRRF) and combined sewer overflows (CSO) on the faecal pollution burden at urban drinking water intakes

Methodology Catchment characteristics

- Urban river in the Greater Montreal Area
 - Highly impacted by (un)treated wastewater discharges
 - Total of 7 WWRF and >150 CSO discharge points
 - Total of 5 DWTP intakes (3 north, 2 south riverbank)

- Autonomous near-real time measurement of GLUC activity
 - Min. 12 max. 24 measurements per day
 - GLUC activity expressed in mMFU.100 mL⁻¹
- Intensive sampling at DWTP intake after rainfall and/or snowmelt
 - DWTP 1: February and April 2017
 - DWTP 2: March 2018
 - Analyses
 - Enumeration of culturable E. coli (MI agar and Colilert)
 - Quantification of protozoan parasites (USEPA method 1623.1)
 - Quantification of enteric viruses (qPCR)
 - Quantification of wastewater micropollutants
- Data collection on catchment characteristics and on local hydrometeorology

GLUC activity

How does it correlate with E. coli?

GLUC activity monitoring (1.5 year) Temporal scales of variation

Temporal scales of variation

1 - Seasons

Temporal scales of variation

2 – Days

Temporal scales of variation

3 – Hours

Drivers of GLUC activity temporal dynamics Rainfall and snowmelt

Intermittent contamination peaks Impact of local point pollution sources

 Microbial peak concentrations occur before turbidity and hydrologic peaks → strongly suggests impact of local sewage by-passes or CSOs

Intermittent contamination peaks Impact of local point pollution sources

• Temporal dynamics of E. coli and pathogen concentrations at the intake

Pathogens follow the same dynamics as GLUC activity and *E. coli* during peak contamination event

Intermittent contamination peaks Impact of local point pollution sources

Temporal dynamics of WWMPs concentrations at the intake

Caffeine also follows similar dynamics as during peak contamination event

Cumulative impact of WWRF & CSO discharges Increase in GLUC activity at downstream DWTP 2

Cumulative impact of WWRF & CSO discharges Increase in GLUC activity at downstream DWTP 2

Recurring daily GLUC activity fluctuations Impact of upstream treated effluent discharges?

- 5 km between closest (same riverbank) WRRF effluent discharge and respective DWTP
- Mixing in the river unlikely to occur within this distance
- But: no hydrodynamic model of the river currently available

Daily GLUC activity fluctuations

What about E. coli concentrations?

- Intensive sampling during 24 hours at DWTP 1
 - Enumeration of culturable *E. coli* by Colilert Quanti-Tray/2000
 - GLUC activity in raw vs soluble (<0.22 μm) water fraction

E. coli and GLUC activity follow same daily pattern

GLUC activity in "soluble fraction" = 12 to 19% of total GLUC activity (constant)

Impact of upstream discharge of treated effluents

Time series analysis for cross-correlations between

Lag time = 8.5h

- Flow rate at WWRF inlet (raw sewage)
- GLUC activity at downstream DWTP 1 intake

Flow rate raw sewage

GLUC activity

Conclusions

- GLUC activity fluctuates from months to hours in drinking water supplies
- Rainfall and snowmelt are the main triggers of intermittent contamination peaks → fall and winter = critical periods
- Our findings show that:
 - GLUC dynamics follow E. coli, pathogen and WWMP dynamics
 - Fecal contaminant peak not synchronous with turbidity or flow rate peak
 - → impact of local CSOs and/or sewage by-passes
 - Cumulative impact of CSO and treated effluent discharges
 - Daily fluctuations in GLUC activity/E. coli reflects signature of treated effluent discharges
- Online near-real time monitoring = useful tool to better "know your catchment" and identify microbial hazards and their sources
- Guide for pollution source remediation actions

- NSERC Industrial Chair on Drinking Water: Yves Fontaine,
 Jacinthe Mailly
- Canada Research Chair on Source Water Protection: Tuc Quoc Dinh, Adyara Ndeye
- Undergraduate students
- Collaborators: Lily Pang, Yuanyuan Qiu, Manuela Villion
- Participating municipalities and plant staff
- VWM Solutions GmBH

<u>jean-baptiste.burnet@polymtl.ca</u> sarah.dorner@polmtl.ca michele.prevost@polymtl.ca