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a b s t r a c t

Past waterborne outbreaks have demonstrated that informed vulnerability assessment of drinking water
supplies is paramount for the provision of safe drinking water. Although current monitoring frameworks
are not designed to account for short-term peak concentrations of fecal microorganisms in source waters,
the recent development of online microbial monitoring technologies is expected to fill this knowledge
gap. In this study, online near real-time monitoring of b-D-glucuronidase (GLUC) activity was conducted
for 1.5 years at an urban drinking water intake impacted by multiple point sources of fecal pollution.
Parallel routine and event-based monitoring of E. coli and online measurement of physico-chemistry
were performed at the intake and their dynamics compared over time. GLUC activity fluctuations
ranged from seasonal to hourly time scales. All peak contamination episodes occurred between late fall
and early spring following intense rainfall and/or snowmelt. In the absence of rainfall, recurrent daily
fluctuations in GLUC activity and culturable E. coli were observed at the intake, a pattern otherwise
ignored by regulatory monitoring. Cross-correlation analysis of time series retrieved from the drinking
water intake and an upstream Water Resource Recovery Facility (WRRF) demonstrated a hydraulic
connection between the two sites. Sewage by-passes from the same WRRF were the main drivers of
intermittent GLUC activity and E. coli peaks at the drinking water intake following intense precipitation
and/or snowmelt. Near real-time monitoring of fecal pollution through GLUC activity enabled a thorough
characterization of the frequency, duration and amplitude of peak contamination periods at the urban
drinking water intake while providing crucial information for the identification of the dominant up-
stream fecal pollution sources. To the best of our knowledge, this is the first characterization of a hy-
draulic connection between a WRRF and a downstream drinking water intake across hourly to seasonal
timescales using high frequency microbial monitoring data. Ultimately, this should help improve source
water protection through catchment mitigation actions, especially in a context of de facto wastewater
reuse.

© 2019 Elsevier Ltd. All rights reserved.
ical, and Mining Engineering,
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1. Introduction

Safe water supply is essential for human health and sustainable
growth. At a global scale, treated surface water (from rivers, lakes,
reservoirs) accounts for at least 50% of the drinking water needs
(IWA, 2019). Yet, most of these supplies are affected by fecal
pollution, and their integrity is increasingly threatened by growing
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populations, urbanization and climate change (Khan et al., 2015;
WHO, 2017). Consequently, unplanned (de facto) wastewater reuse
through abstraction of surface water impacted by treated and/or
untreated wastewater for drinking water production has become
common practice worldwide (Drewes et al., 2017; Rice et al., 2013).
Intense precipitation and snowmelt episodes can substantially
deteriorate the microbiological quality of source waters as they
trigger the release of untreated sewage into the receiving drinking
water supplies through combined sewer overflows (CSOs) and/or
Water Resource Recovery Facilities’ (WRRFs) by-passes (Madoux-
Humery et al., 2016; Tolouei et al., 2019; Tornevi et al., 2014;
Young et al., 2015). In developed countries, large waterborne out-
breaks have mainly occurred following extreme water-related
weather events (Cann et al., 2013; Curriero et al., 2001). CSOs and
wastewater bypasses typically discharge over the course of a few
hours, but they can generate rapid short-term increases in fecal
contaminant concentrations in rivers (Jalliffier-Verne et al., 2016;
Madoux-Humery et al., 2015; Ouattara et al., 2014; Weyrauch et al.,
2010). Identifying peak contamination periods and understanding
the occurrence, fate and transport of fecal contaminants upstream
of water abstraction sites is therefore crucial for prioritizing actions
towards mitigation of fecal pollution sources and human health
protection (WHO, 2016). This need becomes even more urgent as
the vulnerability of drinking water sources to fecal pollution is
expected to grow with global changes (Jalliffier-Verne et al., 2017;
WHO, 2017).

Current monitoring practices for source waters (monthly to
weekly, daily sampling at best) are not suited for reliable identifi-
cation of hazardous events, as infrequent manual sampling easily
misses episodic contamination spikes (Madrid and Zayas, 2007;
Signor and Ashbolt, 2006; Stadler et al., 2008). This is due to the
highly fluctuating nature of microbial temporal dynamics in water
(Boehm, 2007; Burnet et al., 2014) but also to methodological
limitations of standard assays, which rely on culture-based
enumeration of FIB that require at least 24 h-incubation periods.
Madoux-Humery et al. (2016) demonstrated the limitations of
current methodologies for reliable identification and character-
ization of peak E. coli concentrations in drinking water supplies
impacted by intermittent CSOs, advocating for the need of online
monitoring.

Rapid and high-frequencymonitoring of microbial water quality
therefore represents a crucial step towards efficient identification
and management of hazardous events in drinking water supplies.
In recent years, online technologies capable of measuring microbial
parameters at high frequency (<hourly) have been developed and
successfully implemented in various field settings, from source to
the tap (IWA, 2018). These technologies include flow cytometry
(Besmer et al., 2014; Page et al., 2017), enzymatic activity (Ender
et al., 2017; Ryzinska-Paier et al., 2014; Stadler et al., 2016;
Tryland et al., 2015) as well as optical and humic acid-like fluo-
rescence (Højris et al., 2016; Sorensen et al., 2015). Enzyme-based
assays specifically quantify the occurrence of fecal indicator bac-
teria (FIB) such as E. coli by targeting metabolic enzymes already in
use in conventional culture-based assays for these bacteria. In the
case of E. coli, the activity of b-D-glucuronidase (GLUC) enzyme is
predominantly correlated to the occurrence of E. coli in water
(Farnleitner et al., 2001; Fiksdal et al., 1994; Garcia-Armisen et al.,
2005) although cross-reactions with other (fecal) bacteria exist
(Fiksdal and Tryland, 2008). Recent studies have demonstrated that
online GLUC activity monitoring provided an unprecedented
wealth of information on the temporal dynamics of microbial water
quality in various habitats and that GLUC activity could represent a
valuable early warning tool for fecal pollution of water resources
(Burnet et al., 2019; Ender et al., 2017; Ryzinska-Paier et al., 2014;
Stadler et al., 2016, Stadler et al., 2019a). Also, Stadler et al. (2019b)
demonstrated how automated GLUC activity monitoring contrib-
uted to understanding the sources and pathways of fecal pollution
in an agricultural headwater catchment. Most studies on the use of
online GLUC activity as biochemical surrogate of fecal pollution
have not been conducted in the context of drinking water supply.
Yet, near real-time monitoring of microbial water quality could
provide valuable knowledge on the sources and pathways in these
environments and improve water quality assessment and
management.

The objectives of the present study were therefore to gain new
insights into the sources and processes driving microbial water
quality in an urban drinking water supply using near real-time
monitoring of GLUC activity for more than 1.5 years. First, we
sought to unravel the temporal scales of variation in GLUC activity
and explicitly characterize peak contamination events. Secondly,
we contextualized the short- and long-term GLUC activity trends
using available online physico-chemistry as well as hydrometeo-
rological and sewershed data, in order to understand the drivers of
the temporal patterns in microbiological water quality. Thirdly, we
investigated the relationships between GLUC activity and cultur-
able E. coli as well as online physico-chemical parameters through
routine and event-based sampling to evaluate the benefit of online
microbial monitoring. We finally propose an optimized strategy for
targeted collection of microbial water quality data using online
monitoring of GLUC activity. To the best of our knowledge, this is
the first study using high frequency microbial monitoring in water
supplies for the identification of fecal contaminant sources.

2. Material and methods

2.1. Site description

The studied drinking water treatment plant (DWTP) draws
water from a 42-km long river located in the GreaterMontreal Area,
in southwestern Quebec, Canada. The river originates from the St-
Lawrence-Ottawa river system and feeds four additional DWTPs,
which serve >556,000 people in total. The surrounding catchment
adjacent to the river is predominantly characterized by urban land
use, with a total of 9 water resources recovery facilities (WRRFs)
and 190 combined sewer overflows (CSOs) discharging (un)treated
wastewater intermittently to the river. Among these, 4 WRRFs and
37 CSO outfalls are located upstream the studied DWTP intake (3
WRRFs and 30 CSO outfalls occur within the intermediate protec-
tion zone of the intake) (Fig. 1). Intermediate protection areas of
drinking water intakes encompass a 10-km river stretch upstream
from the intake (MDDELCC, 2016). Although agricultural land is
limited in the investigated area, additional diffuse sources of E. coli
could contribute to the faecal pollution load at the DWTP intake.
Based on 26 years of data (1981e2016), the annual average river
flowrate ranges from 140 to 315m3 s�1 and flowrates are highest in
April and May and lowest from July to September (monthly aver-
ages ranging between 380 and 468m3 s�1 and between 144 and
177m3 s�1, respectively) (Environment Canada, 2019).

2.2. Sampling strategy

Samples were collected routinely (three days per week between
Monday and Thursday) and analyzed for E. coli concentrations by
the DWTP staff over the study period (November 2016 to May
2018). Additional high frequency sampling was conducted for
24e48 h using an ISCO 6712 autosampler (Teledyne) in parallel to
online monitoring of GLUC activity. These campaigns were per-
formed under dry weather conditions (absence of rainfall or
snowmelt 72 h prior sampling) and during contamination events
following rainfall/snowmelt episodes. Collected samples were



Fig. 1. Map of the study area including the drinking water treatment plant (DWTP) intake (yellow dot), water resources recovery facilities (WRRF) (black squares) and combined
sewer overflow (CSO) outfalls (red triangles). In this study, only CSO outfalls (1e7, 9e22) and the by-pass of a WRRF (8) located on the south riverbank were investigated. The white
arrow indicates flow direction and the intermediate protection zone of the intake is delimitated by the dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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selected at (bi-)hourly frequency along the GLUC activity polluto-
graph for further enumeration of culturable E. coli. Online GLUC
activity measurements do not involve a pre-filtration step as for the
manual assay (Garcia-Armisen et al., 2005), therefore we tested for
possible soluble interferents that could contribute to the total GLUC
activity signal (Fiksdal and Tryland, 2008). In March 2018, six
additional samples (one sample every 4 h) were filtered through a
sterile 47-mm, 0.22 mm pore size mixed cellulose ester membrane
filter (Millipore) for the measurement of GLUC activity in the sol-
uble (<0.22 mm) fraction of the sample. In a subset of collected
samples (1 sample every 6 h), culturable E. coli were also enumer-
ated in triplicate to determine the analytical variability associated
with the culture-based assay. The analytical variability of GLUC
activity measurements was low, not exceeding 5% on average
(Burnet et al., 2019).

2.3. Culture-based enumeration of E. coli

Enumeration of culturable E. coli during routine and event-
based monitoring was performed by membrane filtration using
USEPA method 1604 (USEPA, 2002). During three additional high-
frequency sampling campaigns, temporal fluctuations in E. coli
concentrations were assessed using defined substrate technology
(Colilert Quanti-Tray/2000, IDEXX) by following the instructions of
the manufacturer. Previous investigations showed that USEPA 1604
and Colilert assay were highly correlated (r> 0.9) (Burnet et al.,
2019).

2.4. Online monitoring of b-D-glucuronidase (GLUC) activity

Near real-time monitoring of b-D-glucuronidase (GLUC) activity
was performed with a ColiMinder Industrial instrument (VWM
Solutions GmbH) at the raw water from November 2016 to May
2018. The analytical validation of the technology (precision and
robustness) has been recently completed within the study area
(Burnet et al., 2019). The instrument was continuously supplied
with raw water from the same pipe used for turbidity, conductivity
and temperature online monitoring. Measurement frequency was
set at bi-hourly frequency (12 measurements per day) or hourly
frequency during selected peak contamination events. Raw data
were continuously recorded, transmitted via awireless modem and
accessed/downloaded remotely.

The rate of fluorescence emitted during the enzymatic reaction
in the flow-through photometric measurement chamber of the
device was expressed in volts per second and converted into
Modified Fishman Units per 100mL (MFU.100mL�1). Calibration by
the manufacturer used commercial enzyme standards (G7396-
25KU, type IX-A b-D-glucuronidase from E. coli, Sigma-Aldrich) with
further details provided by Koschelnik et al. (2015). As determined
by the manufacturer, the limit of quantification (defined as the
reproducible signal exceeding background noise) was 0.8
mMFU.100mL�1.

Since the measurement process itself is based on light intensity
measurements of fluorescence, transmission and reference light
intensity, calibration of instrument sensors and amplification as
well as checking of measurement chamber cleanliness was auto-
matically performed every 25 measurements. Light calibration was
intended for removal of any long-term effects of changing sensor
properties or possible build-up of scale on the glass of the mea-
surement chamber. The temperature in the measurement chamber
was continuously controlled and recorded.

Reagents and buffers were stored as recommended by the
manufacturer. The fluorogenic substrate (CM.EC QuickDetect Re-
agent A. VWM Solutions GmbH) and buffer (CM.EC QuickDetect
Reagent B, VWM Solutions GmbH) were stored at �20 �C and 4 �C,
respectively, before use. During the deployment phase as well as
during laboratory experiments, both solutions were maintained at
4 �C in the cooling block of the instruments. Reagent quality was
ensured by VWMs Quality Control process using defined enzyme
calibration solutions. Reagent dosage in the device was verified
through blank tests, which were automatically carried out with
Milli-Q water after 24 measurements to correct for any offset in
GLUC activity measurements. The GLUC activity measured during
blank tests (assay buffer þ assay substrate þ Milli-Q water) was
automatically deducted from themeasurement results of rawwater
samples to eliminate a possible influence of substrate quality and
aging (ex. autohydrolysis of the reagent).

2.5. Hydrometeorology and online physico-chemistry

Raw water turbidity (Surface Scatter sc turbidimeter, HACH),
conductivity, temperature and pH (sc100, HACH) were measured
online at the intake and operated by the DWTP staff. Flow rate data
were extracted from the public repository of Environment Canada
(Environment Canada, 2019). Daily rainfall data was obtained from
the municipal partner for the closest rain gauge (Fig. 1).
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2.6. Combined sewer overflows, WRRF by-passes and treated
effluent discharges

Sewershed data were provided by the partner municipality.
Location, duration and frequency were gathered (whenever avail-
able) for each combined sewer overflow (CSO) outfall located up-
stream from the drinking water intake. As complete transversal
mixing should occur within a distance equal to 100e1,000 river
widths (Jirka et al., 2004), and given the proximity of upstream
pollution sources to the drinking water intake within the investi-
gated stretch of the river, only those discharge points located on the
same riverbank were suspected of impacting the DWTP intake
(Fig. 1). Continuously measured process data (online flow rate in
raw sewage and UV fluence applied to effluents) were obtained for
the WRRF located 6 km upstream from the drinking water intake.
The treatment at this WRRF includes degritting and settling fol-
lowed by UV disinfection of the primary effluent. The residence
time in the WRRF averages 2.5 h (for an average flow rate of
51,600m3.day�1 during the study period) but it can drop to 1.5 h
during peak flow rates of 75,000m3.day�1 (G. Filiatrault, personal
communication). Additional information on the frequency, duration
and volumes of the sewage by-passes recorded at the WRRF during
the study period was obtained from the municipality.

2.7. Statistical analyses

Cross-correlation and linear regression analyses were per-
formed to investigate the dependency between time series for the
parameters measured during the study period.

Cross-correlation analysis was performed to assess the lag time
between time series at theWRRF and at the downstreamDWTP. For
the WRRF, discharge rates were only available for the plant inlet
(raw sewage) but were considered representative of treated
effluent discharge rates. For the DTWP intake, online GLUC activity
measurements were used. Considering the seasonal patterns of
GLUC activity, these analyses were conducted for two separate
periods of the year. The first period, referred to as “high GLUC ac-
tivity” encompassed 8 months between fall and early spring (after
the last snowmelt) while the second period, referred to as “low
GLUC activity” spanned over the remaining 4 months. The time lag
between the WRRF effluent and the downstream DWTP intake
depends both on the discharge rate in the WRRF and the river flow
rate. As both time series (discharge rate in raw sewage and GLUC
activity at downstream DWTP) did not possess the same mea-
surement frequency, they were linearly interpolated for a common
temporal x axis. Correlation analysis (Chatfield, 2003) between the
variables were then performed using the linear correlation coeffi-
cient and linear regression analysis. The cross-correlation
measured the similarity of the first time series and the shifted
copies of the second one and the delay betweenmeasurements was
estimated by selecting the highest cross-correlation coefficient
(0.94 and 0.84 for “high GLUC activity” and “low GLUC activity”
datasets, respectively).

Linear regression analyses were performed between GLUC ac-
tivity, online physico-chemistry, E. coli, river flow rate and WRRF
discharge rate for the GLUC activity periods as defined above.
Estimated lag times betweenWRRF effluent and DWTP intakewere
integrated into regression analyses. All statistical analyses were
performed in Matlab (Mathworks).

3. Results

3.1. Hydrometeorological conditions

Fig. 2 shows the hydrological and meteorological conditions of
the investigated area from November 17, 2016 to May 31, 2018. In
comparison to historical measurements, the study period was
characterized by higher-than-average precipitation (Fig. S3a).
Monthly rainfall exceeded the monthly averages (1981e2010) for
14 out of the 19 months of the study. This trend was particularly
pronounced from January to May 2017, during which monthly
rainfall accumulation was 1.5e3.2-fold higher than the 30-year
averages. The rainiest month of the study was April 2017
(169.7mm) and highest daily precipitation was recorded on May 1,
2017 (58.1mm). The monthly mean snow cover observed during
the study ranged between 1 cm (November 2017) and 15 cm
(February 2018), and was similar to the monthly mean cover (30-
year average) (Fig. S3b). Highest daily flow rates were recorded in
May 2017 (1080m3 s�1), following cumulative snowmelt and
rainfall episodes that resulted in the 2017 spring flood in the
Greater Montreal Area. During and following this spring flood,
monthly flow rates from May 2017 to July 2017 exceeded historical
(1981e2016) monthly averages by 1.4e2.4 times (Fig. S3c). Lowest
monthly flow rates were measured in November 2016 (83m3 s�1).

3.2. Near real-time monitoring of b-D-glucuronidase activity at the
drinking water intake

High frequency monitoring of GLUC activity yielded a total of
5,992 measurements. In addition, a total of 223 blank measure-
ments were carried out by the device and generated average GLUC
activities of 0.7± 1.3 mMFU.100mL�1 which were automatically
deducted from raw water GLUC activity. The latter ranged from 2.2
to 56.6 mMFU.100mL�1 with an average of 11.3 mMFU.100mL�1

and a 95th percentile of 27.7 mMFU.100mL�1. The “high GLUC ac-
tivity” and “low GLUC activity” periods displayed an average GLUC
activity of 15.2± 7.5 mMFU.100mL�1 (n¼ 3,895) and 5.3± 2.1
mMFU.100mL�1 (n¼ 2,097), respectively. GLUC activities
exceeding the 95th percentile value (defined here as peaks)
occurred during 15 time periods over the 1.5 years. These GLUC
activity peaks lasted on average 36 h but could be observed for up
to 10 days. The longest GLUC activity peak episodes occurred
following snowmelt events (Fig. 2).

GLUC activity medians were 2 to >4 times lower in summer
compared to the other seasons (Fig. S2). The variability in GLUC
activities was also lower during summer months compared to the
rest of the year. Daily patterns were recurrently observed at the
intake; GLUC activity increased overnight before decreasing during
the day (Fig. 3a). Almost 75% of GLUC activity daily maxima
occurred between 10 p.m. and 7 a.m. (Fig. 3b). In the absence of
rainfall or snowmelt events, the amplitude of these daily fluctua-
tions increased from ~2 mMFU.100mL�1 in summer to ~5
mMFU.100mL�1 between fall and spring (Figs. 4e5, Figs. S4eS5).
Measurements of GLUC activity in the soluble (<0.22 mm) fraction
(representing the extracellular GLUC activity and/or soluble inter-
ferents) displayed a stable background signal of 2.4
mMFU.100mL�1, which constituted 15% of the total GLUC activity
signal (Fig. 3a).

3.3. Routine and event-based monitoring of Escherichia coli at the
drinking water intake

The 1.5-year routine monitoring of E. coli at the intake (3 days a
week, n¼ 220 samples in total) yielded a mean concentration of
132 CFU.100mL�1 (min. 1 to max. 1,100 CFU.100mL�1, 95th
percentile of 410 CFU.100mL�1) and a median concentration of
80 CFU.100mL�1. The seasonal pattern of E. coli concentrations was
less pronounced than that observed for GLUC activity (Fig. S2).

During event-based sampling in February, March and April 2017,
a total of 65 samples were collected along the pollutographs (as



Fig. 2. Time series (from Nov 2016 to May 2018) of GLUC activity (min. 12 measurements per day) and concentrations of culturable E. coli (1 measurement per day, 3 days a week) at
the drinking water intake in relationship with local hydrometeorology and wastewater discharges from a WRRF located 6 km upstream and on the same riverbank (outfall #8,
Fig. 1). Shaded areas are detailed in Figs. 4e7.
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defined by hourly GLUC activitymeasurements) andmaximal E. coli
concentrations reached 2,720 CFU.100mL�1. During the three
event-based sampling campaigns, peak E. coli concentrations were
synchronous with peak GLUC activities (Fig. 4).
3.4. Treated wastewater discharges, by-passes and combined sewer
overflows

The WRRF located 6 km upstream from the drinking water



Fig. 3. Daily fluctuations of GLUC activity at the drinking water intake, a) 24-h dynamics of GLUC activity (open circles), soluble GLUC activity (black triangles) and culturable E. coli
concentrations (black dots) under baseline conditions (absence of rainfall 3 days prior sampling) in March 2018. Culturable E. coli were enumerated in triplicate every 6 h (co-
efficients of variation from 10 to 35%). b) frequency of the timing at which daily peak GLUC activities were measured at the intake over the 1.5-year period, c) linear regression
between GLUC activity and E. coli during daily fluctuations under baseline and event conditions (data pooled from 8 high frequency sampling campaigns, R2¼ 0.76, p< 0.001,
n¼ 121).
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intake (Fig. 1) released effluents that were UV-disinfected all year
round, but the fluence varied seasonally and was highest from the
end of July to early October (Fig. 2). Untreated sewage (degritting
only) was released into the river during by-pass events recorded for
148 days (out of 561 days). Snowmelt and rainfall accounted for
>95% of these by-passes, while only 5% occurred during dry
weather. Daily by-pass volumes caused by rainfall and/or snowmelt
ranged from 27 to 39,848m3 (average of 8,582m3) andwere higher
compared to dry weather by-pass events (17e1,877m3, average of
691m3). A significant (p< 0.001) cross-correlation was found be-
tween the flow rate at theWRRF and the GLUC activity measured at
the downstream DWTP intake (Fig. 6).

For CSO discharges located within the intermediate protection
area of the intake (i.e. outfalls 5 to 22, Fig. 1), half of them dis-
charged over the study period, accounting for 58% of the discharge
events for all 22 CSOs located on the south riverbank (Fig. S1).
Among them, outfalls 5e7 were the most active, accounting for
almost 65% of the CSO events recorded within the intermediate
protection area. They were followed by CSO no. 17 (21%), which is
one of the closest discharge points (<2 km) upstream from the
intake (Fig. 1). Volumes discharged by the different CSOs were not
available. Approximate volumes were estimated by the munici-
pality for the discharge points closest to the intake and they did not
exceed 20m3 for a five-year recurrence modified Chicago-type
rainfall episode of 3 h (L. Autixier, personal communication).

Time delays between the WRRF and the DWTP measurements
were estimated for two different periods: winter and summer. In
winter, the cross-correlation analysis was performed on data from
Feb 1 to Feb 23, 2017. This period was selected to isolate the
baseline signals in absence of rainfall/snowmelt. The similarity
between the signals from the WRRF and DWTP was maximal for a
4-h time lag, representing the time for the water to travel from the
WRRF inlet to the DWTP intake. In summer, the cross-correlation
analysis was performed on data from July 1 to August 8, 2017.
The similarity between the two signals was maximal for a time lag
of 8.5 h.

3.5. Correlations between GLUC activity and online physico-
chemical parameters at the intake

Relationships between GLUC activity and online physico-
chemical parameters were assessed for two different periods of
the year characterized by either “high” or “low” GLUC activities (as
defined in section 2.7) and which encompassed fall to early spring
and late spring to summer months, respectively. Colored boxes of
the correlation matrices (Fig. 7) are significant at the level of a¼ 1/
1000. Blank boxes indicate the absence of significant relationships
at the level of a¼ 1/20. GLUC activity was significantly correlated
with culturable E. coli, turbidity, conductivity as well as river and
raw sewage flow rates although the strength of the relationships
varied among parameters and between “low GLUC activity” and
“high GLUC activity” periods.

4. Discussion

4.1. Impact of the continuous upstream release of treated effluents
on the microbial water quality at the drinking water intake

A recurrent daily pattern in GLUC activity was observed
throughout the year at the intake of the drinking water treatment
plant (Figs. 4e5, Figs. S4eS5). The overall trend consisted in an
increase of GLUC activity in the evening, followed by an overnight
peak and a gradual decrease over the day (Fig. 3). In a previous
study, Stadler et al. (2016) also reported daily GLUC activity fluc-
tuations in a small agricultural catchment, but the daily peaks
occurred in the late afternoon and were apparently not associated
with sewage discharges. In a karst spring in Vietnam, Ender et al.
(2017) observed GLUC activity peaks in the evening and



Fig. 4. Impact of the release of treated, untreated, or partially treated sewage on the fecal pollution dynamics at the intake of the drinking water treatment plant during combined
snowmelt/rainfall-induced runoff events in February, March and April 2017. Near real-time GLUC activity measurements were combined with routine and event-based monitoring
of E. coli (green and black circles, respectively). The number associated with combined sewer overflow events (CSO) refers to the outfalls identified in Fig. 1. MFU, modified Fishman
units; CFU, colony-forming units. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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suspected anthropogenic activities in the recharge area of the
spring to cause these spikes. However, their observations were
based on a limited set of data and the drivers of these daily fluc-
tuations were not explicitly identified.

In this study, the amplitudes of daily GLUC activity fluctuations
under baseline conditions varied between seasons. Highest am-
plitudes were observed from late fall to early spring, and lowest in
summer (Figs. S4eS5). For a 1-month period representative of
winter conditions (mid-January to mid-February 2017), the
amplitude averaged 4.7± 1.1 mMFU.100mL�1. During that same
period, the amplitude of daily water temperature fluctuations
averaged 0.1± 0.2 �C, which minimizes the importance of any
temperature-related processes affecting enzymatic activity
(Bergmeyer, 2012). The low and stable GLUC activity signal
measured in the soluble fraction of intake samples (Fig. 3a) leaves
out the possibility of measurement interferences by extracellular
GLUC activity or non-target compounds (Fiksdal and Tryland,
2008). Instead, concentrations of culturable E. coli displayed
similar daily patterns and were significantly correlated to GLUC
activity (Fig. 3). The hypothesis of a unique and continuous
discharge inducing daily microbial water quality fluctuations of
river water at the intake was eventually confirmed by cross-
correlation analysis (Fig. 6). The latter revealed a strong
(p< 0.001) association between the GLUC activity time series
measured at the intake and the lagged time series for sewage
discharge rate at a WRRF located 6 km upstream of the intake. This
link was more pronounced in winter than in summer, as rainfall
episodes and resulting increases in treated effluent discharge rates
generated higher amplitudes of daily GLUC activity fluctuations
(Fig. 4, Fig. S4). Daily fluctuation patterns disappeared or were
strongly attenuated following major snowmelt runoff episodes,
illustrating the overlapping drivers of GLUC activity dynamics in
the catchment. (Fig. 5). Numerous studies have documented the
impact of WRRF effluents on the chemical and microbiological
quality of receiving waters (Jalliffier-Verne et al., 2016; Madoux-
Humery et al., 2016; Ort and Siegrist, 2009; Ouattara et al., 2014).
To the best of our knowledge though, this is the first time that the
hydraulic connection between a WRRF and a downstream DWTP is
characterized across hourly to seasonal scales using high frequency
microbial monitoring data.

4.2. Impact of intermittent releases of untreated sewage on the
microbial water quality at the drinking water intake

In addition to the continuous release of treated effluents, the
WRRF discharged partially treated sewage (after degritting) into
the river at 148 occasions during the study period, which triggered
major GLUC activity peaks (Fig. 2). Sewage by-passes occurred
when the daily capacity of the WRRF (75,000m3.day�1) was sur-
passed, usually following snowmelt and/or intense precipitation
episodes. During the combined rainfall-snowmelt episodes of
February and April 2017, discharged sewage volumes exceeded



Fig. 5. Short-term dynamics of GLUC activity (orange line) and E. coli (green circles for routine monitoring) in relationship with local hydrometeorology and an upstream WRRF
(flow rate at WRRF inlet and sewage by-passes) in January and March 2018. MFU, modified Fishman units; CFU, colony-forming units. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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30,000m3.day�1 on several occasions, which was reflected by rapid
increases in GLUC activity and culturable E. coli at the downstream
DWTP intake (Fig. 4).

Additional releases of raw sewage by combined sewer overflows
(CSOs) were also observed (Figs. 4e5, S4-S5). Most CSO events were
recorded for outfall #4 (Fig. 1, Fig. S1), but the latter did not appear
to affect GLUC activity dynamics, likely because of its distance
(11 km) to the intake. In addition, estimated discharge volumes for
the closest CSO outfalls #17 and #20e22 (L. Autixier, personal
communication) were on average more than 500-fold lower than
those of sewage by-passes at the WRRF. Although the low number
of CSOs equipped with online recorders hampered the precise
assessment of their relative contribution to E. coli loads at the
intake, their impact is expected to be limited compared to the
WRRF by-passes. Results from the investigated urban catchment
thus underscore the predominant influence of WRRF by-passes on
the microbial water quality at the intake, especially during winter
and spring.
4.3. Local hydrometeorology governs GLUC activity short and long-
term dynamics

The seasonality of microbial parameters in water is associated
with catchment-specific and hydrometeorological-driven pro-
cesses (Wilkes et al., 2009). In our study, both GLUC activity and
E. coli concentrations varied seasonally (Fig. S2). Peak contamina-
tion events and the highest GLUC activity amplitudes (Figs. S4eS5)
occurred from late fall to early spring, when heavy rainfall and/or
snowmelt episodes contributed to the release of partially treated or
untreated sewage into the river through WRRF by-passes and CSOs
(Table 1). In contrast, GLUC activity and E. coli concentrations were
comparatively lower during summer, despite high precipitation
volumes in 2017 (Fig. 2). This could be due to higher settling rates
and/or prolonged exposure to a combination of biotic (grazing) and
abiotic (solar irradiation, temperature) stressors (Blaustein et al.,
2013; Servais et al., 2009; Wanjugi and Harwood, 2013) given the
longer residence times in the river (Fig. 8). In contrast, during high
river flow rates in winter and early spring, dispersion rates
increased (Jalliffier-Verne et al., 2017). In addition, the UV-mediated
inactivation of E. coli at the WRRF could have been suboptimal due
to higher particle loads in the primary effluent and lower contact
times during disinfection (€Ormeci and Linden, 2002). As shown in
Fig. 2, lowest UV doses at theWRRF effluent were measured during
winter and early spring.

At shorter time scales, we identified three weather patterns that
triggered GLUC activity peaks of different magnitudes and dura-
tions at the DWTP intake: 1) intense (�30mm.day�1) precipitation,
2) snowmelt, 3) precipitation (>10mm.day�1) during snowmelt.
Snowmelt episodes caused progressive GLUC activity increases and
those contamination events lasted for several days (Fig. 5). In
contrast, intense precipitation events caused steeper and shorter
GLUC activity peaks, the magnitude of which depended on the river
flow rate. For instance, intense precipitation on Dec 2, 2016 (Fig. S4)
triggered the highest recorded GLUC activity peak (>55



Fig. 6. Cross-correlation between raw sewage flow rate measured at the upstream WRRF and online GLUC activity measured at the DWTP intake a) time series of GLUC activity
(orange) and flow rate in raw sewage (black) representative of winter (February to March 2017) and summer (July to August 2017) conditions. A lag time of 4 h in winter and of 8.5 h
in summer maximizes the similarity of the time series b) Upper panel: linear regression between the lagged WRRF time series and the DWTP time series in winter (p< 0.001 and
R2¼ 0.53). Lower panel: linear regression between the lagged WRRF time series and the DWTP time series in summer (p< 0.001 and R2¼ 0.12). (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Correlation matrices for online parameters measured in this study. a) “high GLUC activity” period, b) “low GLUC activity” period (see material and methods section). The
blank cells are the ones for which the correlation coefficient was not significant at the a¼ 1/20 level. Note that all the colored cells are significant at the a¼ 1/1000 level.
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mMFU.100mL�1), likely due to limited dilution in the river under
unusually low flow rate conditions (Fig. S3c). Following a precipi-
tation event of similar intensity on June 6, 2018, GLUC activity
peaked only at 10 mMFU.100mL�1 (Fig. S5). Historically high river
flow rates were recorded at that time of the year, following the
worst spring floods in the region since 1976. The latter occurred in
May 2017 and resulted from a combination of a relatively deep
snowpack, saturated soils, and precipitation (OURANOS, 2019) with
river flow rates exceeding 1,000m3 s�1 (1981e2016 average of
380m3 s�1 for May). The floodwaters were related to regional scale
hydrology; they were thus not associated with major and episodic
GLUC activity peaks. Despite the occurrences of emergency sewage
by-passes throughout the 2017 spring flood, their effect on peak
and average GLUC activities progressively diminished (Figs. 2 and
4) due to increased dilution by floodwaters.

Snowmelt and intense precipitation have been shown to cause
large increases in E. coli concentrations in surface waters
(Kistemann et al., 2002; Tornevi et al., 2014; Whitman et al., 2008),



Table 1
Hydrometeorological triggers of GLUC activity peaks (>95th percentile) at the drinking water intake.

Hydro-meteorological
triggers

GLUC activity peak Cumulative
rainfalla

Max snow cover
(cm)

WRRF by-passes (yes/
no)

Number of CSO events (outfall
#)b

Date Peak activity
(mMFU.100mL�1)

72 h 48 h 24 h

Rainfallc Dec 2, 2016 55.6 41.3 29.8 1.2 Y
Oct 30, 2017 36.9 35.6 35.6 11.1 Y
April 5,
2018

29.4 29.7 29.7 0 Y 2 (5,13)

Snowmeltd Mar 3, 2018 46.1 29.0 Y

Rainfall þ snowmelt Dec 27,
2016

39.8 24.8 13.5 13.5 15.0 N

Jan 12, 2017 30.4 32.7 32.7 32.7 9.0 N 1 (9)
Feb 26,
2017

36.0 27.2 26.5 22.9 29.0 Y 1 (17)

April 5,
2017

35.9 40.2 39.3 39.3 28.0 Y 2 (6,9)

Jan 12, 2018 29.4 50.1 50.1 38.0 16.0 Y
Jan 21, 2018 39.6 12.1 12.1 12.1 21.0 Y 1 (9)

a Time before peak GLUC activity.
b For CSOs within the intake intermediary protection zone (discharge points 6e22, see Fig. 1).
c Absence of snow melt at least 3 days prior to the GLUC activity peak event.
d 3 days-cumulated rainfall <1mm.

Fig. 8. Relationship between times series for online GLUC activity (orange), turbidity (green) and conductivity (black) following intense precipitation and/or snowmelt episodes (see
Table 1 for details). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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which was also observed in our settings. In addition, the use of near
real-time monitoring of GLUC activity enabled a more thorough
characterization of the frequency, magnitude and duration of
episodic microbial spikes at the intake under a series of hydro-
meteorological conditions, some of which were historic for the
region. The availability of online monitoring during the 2017 flood
was reassuring for water managers given that it provided real-time
data during an emergency. Such information is important for the
identification of upstream pollution sources and for better
appraisal of the timing and magnitude of hazardous events in the
drinking water supply towards improved human health protection
(WHO, 2016).
4.4. Online b-D-glucuronidase monitoring as early warning fecal
indicator?

Besides recent technologies for near real-time monitoring of
microbial parameters such as the one used in this study, online
sensors for turbidity and conductivity provide rapid and automated
high frequency measurements. They are routinely used by water
utilities for real-time monitoring of source water quality and water
treatment processes. Recent studies though have reported the
absence or weak association between these parameters and GLUC
activity (Stadler et al., 2016; Ender et al., 2017; Ryzinska-Paier et al.,
2014; Stadler et al., 2010). Our results show that the relationship
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between online GLUC activity and turbidity depended on the
period of the year. It was moderate (r¼ 0.57) during the “low GLUC
activity” period (late spring to end of summer) but much weaker
during the “high GLUC activity” period (fall to early spring) (Fig. 7).
During the latter period, a lag of 18 to >24 h was observed between
most GLUC activity and turbidity peaks (Fig. 8). Furthermore, online
turbidity did not reflect daily patterns as those reported by GLUC
activity. Conductivity can be indicative of point sources of fecal
pollution such as WRRFs (De Sousa et al., 2014) and its strong
relationship with GLUC activity during the “high GLUC activity”
period (Fig. 7) confirmed the impact of WRRF effluents on the
drinking water intake. Ort and Siegrist (2009) reported daily con-
ductivity fluctuations in a small creek, which were associated with
discharge variations from an upstream WRRF. In this study, we
observed daily conductivity variations, but their amplitude was
much lower than for GLUC activity. Furthermore, during local
snowmelt isolated conductivity peaks possibly caused riverine in-
puts of road salt were observed in absence of GLUC activity peaks
(Fig. S6). During the February 2017 event, online conductivity and
turbidity values increased over time, but their respective peaks
were delayed by several hours compared to GLUC activity (Fig. 8).
Considering that E. coli concentrations quickly rose by> 1 log10
along the GLUC activity peak (Fig. 4), reliance on conductivity or
turbidity would thus have led to the omission of this episodic fecal
pollution spike at the intake.

Significant relationships between GLUC activity and culturable
E. coli have been reported previously, especially during contami-
nation peaks (Burnet et al., 2019; Ender et al., 2017; Stadler et al.,
2016, 2019b). Based on routine and event-based monitoring,
E. coli concentrations associated with GLUC activities >95th
percentile (>27.7 mMFU.100mL�1) ranged from 108 to
2,720 CFU.100mL�1. This variability in E. coli concentrations during
GLUC activity peaks may have resulted from contrasting composi-
tions in E. coli populations in terms of metabolic status (Garcia-
Armisen et al., 2005). In winter and spring, E. coli concentrations
dropped quicker than GLUC activities following snowmelt-driven
contamination peaks (Fig. 4). Given that culturable E. coli rapidly
decline in snow but may remain viable for weeks (Staley et al.,
2017), snowmelt runoff could have carried a large proportion of
non-culturable, yet GLUC active E. coli cells that contributed to the
enzymatic signal. In contrast, synchronous rapid increases in GLUC
activity and E. coli following intense precipitation strongly sug-
gested the transport of recent contamination from local sewage
discharges. Online GLUC activity could thus be used as early
warning tool for the detection of episodic fecal contamination
peaks in the drinking water supply.

Additional research is needed to better understand the potential
sources and sinks of non-target microorganisms and their effect on
GLUC activity measurements (Fiksdal and Tryland, 2008). The
contribution of river sediment resuspension on the mobilization of
GLUC active microorganisms, especially during runoff conditions
(Stadler et al., 2019b) also warrants further investigations. Finally,
data on the persistence of GLUC signals in comparison to culturable
E. coli are needed to determine their respective fate and transport in
water. This knowledge will provide insights into the applicability of
online GLUC activity as fecal indicator and early warning system in
diverse aquatic environments.

4.5. Advancing water quality monitoring frameworks using online
near real-time measurement of GLUC activity

Compliance monitoring frameworks have been inadequate in
preventing waterborne disease outbreaks and ensuring safe
drinking water supply in developed nations, notably because of
suboptimal monitoring strategies (Hrudey et al., 2003). The latter
do not reliably describe source water quality fluctuations, which
can influence microbial risk. These fluctuations are directly asso-
ciated with hydrometeorological factors such as intense precipita-
tion and spring snowmelt that have led to major waterborne
disease outbreaks within the past three decades (Curriero et al.,
2001; Thomas et al., 2006).

Even though routine monitoring of E. coli in source water
occurred more frequently at the studied DWTP than the prescribed
weekly sampling, most E. coli peak concentrations were missed in
absence of targeted sample collection (Figs. 2 and 4). As source
water protection aims to reduce peak concentrations, the repre-
sentativeness of source water monitoring should be improved by
also explicitly targeting peak concentration events. We show that
near real-time monitoring of GLUC activity enabled to characterize
the frequency, duration andmagnitude of contamination peaks and
provided crucial knowledge on the nature and timing of upstream
pollution sources affecting the DWTP intake under baseline and
event conditions. Near-real time online information by GLUC ac-
tivity time series will further offer new opportunities for targeted
sampling of additional water quality parameters (Ryzinska-Paier
et al., 2014).

Ongoingwork aims at assessing the relationships between GLUC
activity, culturable E. coli and the occurrence of waterborne path-
ogens and fecal source markers under various hydrometeorological
settings. Such data will eventually help assessing the value of on-
line GLUC activity in microbial risk assessment and fecal source
tracking to help water utilities better track critical situations in
their water supply. In a context of growing vulnerability of drinking
water supplies to global changes, source mitigation measures could
be better prioritized to efficiently reduce the fecal burden upstream
of the drinking water treatment train.

5. Conclusions

- Online monitoring of GLUC activity was performed at bi-hourly
frequency for 1.5 years to unravel temporal scales of fecal
pollution dynamics at an urban drinking water treatment plant
(DWTP) intake.

- GLUC activity displayed seasonal to hourly patterns of temporal
fluctuation, peak contamination episodes being observed from
late fall to early spring.

- Recurrent daily patterns in GLUC activity provided a fingerprint
of a continuous impact of treated wastewater effluents on the
microbial water quality at the DWTP intake.

- Peak contamination episodes were triggered by rainfall and/or
snowmelt-induced sewage by-passes from an upstream water
resources recovery facility (WRRF).

- Combined sewer overflows appeared to have a comparatively
lower impact than sewage by-passes because of their distance to
the intake and lower discharged volumes.

- The relationships between GLUC activity, E. coli and online
physico-chemistry varied seasonally; GLUC and E. coli peaked
synchronously during episodic contamination events.

- Acquisition of high frequency measurement datasets improves
our understanding of catchment microbial dynamics through
identification and characterization of intermittent pollution
peaks in drinking water supplies.
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