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A B S T R A C T   

Safeguarding the microbial water quality remains a challenge for drinking water utilities, and because of pop-
ulation growth and climate change, new issues arise regularly. To overcome these problems, biostable drinking 
water production and water reuse will become increasingly important. In this respect, high-resolution online 
microbial monitoring during treatment and distribution could prove essential. Here, we present the first scientific 
and practical comparison of multiple online microbial monitoring techniques in which six commercially avail-
able devices were set up in a full-scale drinking water production plant. Both the devices’ response towards 
operational changes and contaminations, as well as their detection limit for different contaminations were 
evaluated and compared. During normal operation, all devices were able to detect abrupt operational changes 
such as backwashing of activated carbon filters and interruption of the production process in a fast and sensitive 
way. To benchmark their response to contaminations, the calculation of a dynamic baseline for sensitive sepa-
ration between noise and events is proposed. In order of sensitivity, enzymatic analysis, ATP measurement, and 
flow cytometric fingerprinting were the most performant for detection of rain- and groundwater contaminations 
(0.01 – 0.1 v%). On the other hand, optical classification and flow cytometric cell counts showed to be more 
robust techniques, requiring less maintenance and providing direct information about the cell concentration, 
even though they were still more sensitive than plate counting. The choice for a certain technology will thus 
depend on the type of application and is a balance between sensitivity, price and maintenance. All things 
considered, a combination of several devices and use of advanced data analysis such as fingerprinting may be of 
added value. In general, the strategic implementation of online microbial monitoring as early-warning system 
will allow for intensive quality control by high-frequency sampling as well as a short event response timeframe.   

1. Introduction 

Microbial contamination is the most prevailing risk to public health 
associated with drinking water (WHO 2017). Safeguarding drinking 
water quality remains a challenge for drinking water utilities, with new 
issues arising regularly. Droughts and population growth are already 
stressing the drinking water provision, even in moderate climates (e.g. 
Limburg, Flanders, 2020). Due to global warming, outbreaks of water-
borne diseases caused by opportunistic pathogens (e.g. Pseudomonas 
aeruginosa) are predicted to take place more frequently and have more 
severe consequences in the future (van der Kooij et al. 2013). 

Currently, microbial regrowth in the distribution network is 

suppressed by adding a disinfection residual at the end of the treatment 
train, though this approach has several known drawbacks such as for-
mation of harmful disinfection by-products, and induction of uncon-
trolled necrotrophic growth on the dead biomass (Chatzigiannidou et al. 
2018, Li and Mitch 2018, Temmerman et al. 2006). Hence, drinking 
water utilities are looking into alternative ways to produce microbially 
safe drinking water without the use of disinfection residuals, as for 
example the production of biostable water (Nescerecka et al. 2014, 
Prest et al. 2016). The latter approach implies that the microbial com-
munity remains stable during distribution without the use of a disin-
fectant (Lautenschlager et al. 2013, Rittman and Snoeyinck 1984, van 
der Kooij 2000). This can be achieved by focusing on extensive 
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treatment such as nutrient limitation (e.g. assimilable organic carbon 
(AOC) < 10 µg/L), and intensive maintenance of the distribution system 
(Prest et al. 2013, van der Kooij et al. 1982, Van Nevel et al. 2013). 

When producing and distributing biostable drinking water, moni-
toring of the microbial drinking water quality becomes even more 
important. Heterotrophic and selective plate counting are the legal 
standard, but are not sufficient for detection of short-term water quality 
changes (European Communities, 1998, Buysschaert et al., 2018; US 
Congress, 1996). Online monitoring systems are therefore gaining 
attention, as these allow a high-resolution quantification of the micro-
bial dynamics, with a short time-to-result (i.e. 10 min to 2.5 hours). 

A variety of online microbial monitoring techniques is commercially 
available. Online enzymatic techniques detect the total microbial load 
by commonly targeting the generic enzyme alkaline phosphatase (ALP) 
or the total coliforms and Escherichia coli by detection of the selective 
enzymes β-D-galactosidase and β-D-glucuronidase respectively (Hesari 
et al. 2016, Koschelnik et al. 2015). The microbial abundance is then 
quantified indirectly, by measuring the enzymatic hydrolysis of chro-
mogenic and fluorogenic substrates (Rompré et al. 2002). Another in-
direct method for quantifying the microbial activity is online 
measurement of intracellular ATP, by detecting the fluorescent con-
version of luciferin by the enzyme luciferase (de Vera and Wert 2019, 
Vang et al. 2014). Direct methods are commercially available as well. 
Online optical particle classifiers for example, use microscopic images 
for separation between bacteria and background particles (Højris et al. 
2016, Højris et al. 2018). Online flow cytometry, which uses nucleic acid 
staining for quantifying the bacterial cell concentration, is another, 
well-established research technique, which has recently become 
commercially available as well (Besmer et al. 2014, Hammes et al. 
2012). In combination with advanced data-analysis, it can even be used 
to assess the bacterial community characteristics (Props et al. 2016). 

In this study, we present the first scientific and practical comparison 
of multiple online microbial monitoring techniques. Six devices were set 
up in a full-scale drinking water production plant. Both the devices’ 

response towards operational changes and contaminations, as well as 
their detection limit for different contaminations were evaluated and 
compared. With this study, we aim to give an overview of the existing 
technologies on a scientific basis, in order to determine their compati-
bility with different applications in the drinking water sector or other 
industries. 

2. Materials and Methods 

2.1. Set-up 

The study was performed in a full-scale drinking water production 
plant (De Watergroep, Kluizen, Belgium), where the drinking water is 
produced from surface water (60 000 m3/day) using conventional 
techniques including coagulation, flocculation, sedimentation, flotation 
and filtration. The last steps of the treatment train include ozone 
disinfection, two-step activated carbon filtration and chlorination. The 
set-up was installed after the activated carbon filters, before chlorina-
tion, during seven weeks (Fig. SI.1). The sampling location was chosen 
to perform the experiments in a controlled full-scale environment 
without the presence of free chlorine. From October 21st until November 
18th 2019, routine operational monitoring was performed. During this 
period, the devices were directly connected to the drinking water 
pipeline. From November 18th until December 11th 2019, the set-up was 
disconnected from the drinking water pipeline and experiments with 
different contaminations were performed (section 2.5). The set-up 
consisted out of a vessel (V = 100 L, well mixed), connected to a 
bleeding line coming from the main pipeline. From this vessel, the 
drinking water was pumped to the online monitoring devices (Fig. SI.2). 
During operational monitoring and flushing periods, the vessel served as 
an overflow to the sewer, and during the contamination experiments, 
the vessel was used for spiking and for water recirculation. 

2.2. Online microbial monitoring devices 

Six commercially available, online microbial monitoring devices 
were used. All techniques rely on different mechanisms for detection of 
the total microbial (mainly bacterial) concentration, and were operated 
with different measurement frequencies, ranging from 10 minutes to 2.5 
hours. All costs are based on Belgian quotes, VAT excluded, provided by 
the suppliers and/or actual invoices for the devices and consumables 
that have been purchased. Since these costs will vary dependent on the 
(local) market conditions, the number of devices that are ordered (bulk 
vs. one), the volume of consumables that is purchased and/or custom-
ization, the costs are expressed as a range. The capital expenditures 
(CAPEX) are expressed as initial investment cost for the measuring de-
vice as we have used it in our research. The operational expenditures 
(OPEX) are expressed as a cost per sample, and as a range since these 
costs depend strongly on the consumable cost for e.g. chemicals. 

A ColiMinder (VWMs GmbH, Austria), further referred to as “ENZ”, 
was used as a first enzymatic technique to determine the total microbial 
concentration using the Alkaline Phosphatase Activity Assay Kit (VWMs 
GmbH, Austria). The enzyme alkaline phosphatase (ALP) converts the 
substrate 4-methylumbelliferyl phosphate (4-MUP) to 4-methylumbelli-
ferone (4-MU) (λmax, abs = 365 nm) under alkaline conditions. The re-
agents were provided as standardized solutions in the QuickDetect Assay 
Reagents (VWMs GmbH, Austria) and were prepared and stored as 
recommended by the manufacturer. MilliQ (Merck, Belgium) with a 
trace amount of NaOCl was used for rinsing. The total microbial activity 
is measured as ALP activity, and is expressed as µU/100 mL, with one 
unit (U) ALP converting 1 mol 4-NPP per minute in glycine buffer (pH 
10.4) at 37◦C. A sample (6.5 mL) was taken every hour (operational 
monitoring and major contaminations) or every 30 minutes (minor 
contaminations), after which a standard cleaning procedure was 
performed. 

A second online enzymatic device, BACTControl (microLAN, The 
Netherlands), further referred to as “ENZ-2”, was also installed. This 
device targets different enzymes for different indicators of microbial 
contamination: β-D-galactosidase (coliforms), β-D-glucuronidase 
(Escherichia coli) and alkaline phosphatase (total microbial activity). The 
enzyme activity was detected by conversion of a standard substrate to 4- 
methylumbelliferone (4-MU) (λmax, abs = 365 nm). Standard reagent 
solutions were used and stored as provided and recommended by the 
manufacturer (microLAN, The Netherlands). Samples (100 mL) were 
filtered (0.45 µm) to concentrate the microorganisms, then incubated, 
after which the fluorescence was detected by a photodiode (λmax, em =
445 nm), and converted to enzymatic activity per time and volume 
(pmol MU x min/ 100 mL). Samples were taken every 2.5 hours (oper-
ational monitoring) or 2 hours (major contaminations). After each 
measurement, a cleaning procedure with buffer (<0.05 % HOCl) and 
heating was performed to eliminate residues in the system. 

An online EZ-ATP (Hach, Belgium), further referred to as “ATP”, was 
used for detection of intracellular ATP. The method is based on the ATP 
firefly assay (standard method ASTM D4012-15), using the Water-GloTM 

reagents (Promega, Belgium). The amount of reaction product oxy-
luciferin (λmax, abs = 390 nm) is measured with a luminometer, and with 
calibration, converted into pg ATP/mL. The analysis consists of two 
consecutive measurements, of extracellular ATP (filtration) and total 
ATP (ultrasonic cell lysis). The intracellular ATP is then calculated as the 
difference between the total and extracellular ATP. A sample (1 mL) was 
taken every 30 minutes (operational monitoring) or every 20 minutes 
(major and minor contaminations). After every 10 measurements, an 
automatic cleaning cycle was performed with sodium hydroxide (1M) 
and hydrochloric acid (1M) to avoid biofilm formation and remove re-
sidual ATP. 

Two online flow cytometric techniques were used in this study. The 
first online flow cytometric monitoring technique used an onCyt (onCyt 
Microbiology AG, Switzerland) add-on module, coupled to an Accuri C6 
flow cytometer (BD Biosciences, Belgium). As this flow cytometer relies 
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on hydrodynamic focusing for the alignment of cells, it is further 
referred to as “FCM-H”. The flow cytometer is equipped with a blue (20 
mW, 488 nm) and a red laser (12.5 mW, 640 nm), two scatter detectors 
(side and forward scatter) configured on the blue laser, and four fluo-
rescence detectors with bandpass filters. Three of the bandpass filters are 
for the blue laser emission (FL1: 533/30 nm, FL2: 585/40 nm, and FL3: 
670 LP) and one is for the red laser emission (FL4: 675/25 nm). MilliQ 
(Merck, Belgium) was used as sheath fluid. Staining was performed 
using 1000x dilution in TRIS buffer (pH 8.2) of SYBR Green I concen-
trate (Invitrogen, Belgium), with 10 v% final concentration. Three 
samples (74.1 ± 2.8 µL) were taken every hour (operational monitoring 
and major contaminations) or 30 minutes (minor contaminations), and 
were incubated at 37◦C for 20 ± 2 minutes prior to measuring. Between 
measurements, the incubation chambers were rinsed using MilliQ 
(Merck, Belgium). QC was performed using Spherotech 8-peak valida-
tion beads (BD Biosciences, Belgium). 

The second online flow cytometer used in this study was a Bacto-
Sense (bNovate, Switzerland), which makes use of capillary alignment of 
particles. Hence, it is further referred to as “FCM-C”. The flow cytometer 
is equipped with a blue 488 nm laser diode, two fluorescence detectors 
(FL1: 525/45 nm, FL2: 715 LP) and one side scatter detector (SSC: 488/ 
10 nm). Staining was performed using SYBR Green I in DMSO (0.1 %), 
cleaning was performed using sterile water with 0.05 % sodium azide, 
and 0.1 % NaOCl. One sample (90 µL) was taken every hour (operational 
monitoring and major contaminations) or 30 minutes (minor 
contaminations). 

An optical sensor, BACMON (GRUNDFOS, Denmark), further 
referred to as “OPT”, was also installed. The device was connected to the 
pressurized water stream and measured at a fixed interval of 10 minutes 
during the study. The device consists of a flow cell (6 µL) and a camera 
that fixes and scans the sample respectively, after which a patented 
neural network classification algorithm classifies the particles on the 
images as “bacteria” and “non-bacteria”, by characterizing every parti-
cle using 59 optical parameters and comparison with a preinstalled li-
brary (Højris et al. 2016, Højris et al. 2018). Between measurements, the 
flow cell was thoroughly rinsed with fresh drinking water. 

2.3. Offline measurements 

Validation of the microbial water quality was performed indepen-
dently in the lab. Standard drinking water samples were taken near the 
sampling point by the drinking water utility every 4-5 days. Hetero-
trophic plate counts were analyzed on R2A (68 h at 36◦C) and on yeast 
extract agar (68 ± 4 h at 22◦C) consisting out of tryptone (6 g/L), yeast 
extract (3 g/L), and agar (12 g/L). A pour plate method was used in 
which 15 mL liquid agar was added to 1 mL sample. Colilert-18 and 
Quanti-Tray (IDEXX, Germany) were used for the detection of coliforms 
and Escherichia coli, and Enterolert (IDEXX, Germany) was used for the 
detection of enterococci. The concentration of carbon, nitrogen and 
phosphorous during the experiments was also measured in compliance 
with the drinking water regulations. The concentrations fluctuated 
slightly within the expected ranges for drinking water quality (3.0 ± 0.3 
mg/L NPOC, 1.6 ± 0.5 mg/L total N, 0.01 ± 0.0 mg/L PO43−). 

During the contamination experiments (Nov 18th - Dec 11th), the 
total bacterial concentration of the raw contaminations was analyzed 
using an AccuriC6 Plus flow cytometer (BD Biosciences, Belgium). Its 
working mechanism is comparable to the Accuri C6 flow cytometer (see 
above). Staining was performed using SYBR Green I (SG, 100x concen-
trate in 0.22 μm-filtered DMSO, Invitrogen), with incubation for 20 
minutes at 37◦C (Props et al. 2016). Furthermore, standardized micro-
bial analyses were performed in an external accredited lab. Samples 
were taken in sterile 0.5 L HDPE vials containing sodium thiosulfate to 
neutralize free chlorine, and were analyzed within 24 hours to deter-
mine the heterotrophic plate counts (68 ± 4 h at 22◦C), and to detect 
coliforms (Colilert-18 and Quanti-Tray, IDEXX, Germany) and entero-
cocci (Enterolert, IDEXX, Germany), according to WAC/V/A/001, 

WAC/V/A/002 and WAC/V/A/003 (VITO 2020). 

2.4. Contamination experiments 

Two contamination experiments were performed. In the first exper-
iment (major contaminations), relatively high concentrations of 
different contaminations were added and were recycled through the 
pump-vessel system (section 2.1). Three different matrices were used as 
contamination: rainwater (runoff green roof, 3.32 ± 0.16 × 106 cells/ 
mL) at Nov 19th – Nov 21st, in respectively 10, 5 and 0.5 v%, shallow 
groundwater (FARYS drinking water production plant, Oudenaarde, 
Belgium, 1.08 ± 0.00 × 106 cells/mL) at Nov 25th – Nov 27th, in 
respectively 10, 5 and 1 v%, and effluent of a wastewater treatment 
plant (WWTP Aquafin, Ghent, 9.93 ± 0.2 × 106 cells/mL) at Dec 2nd – 

Dec 4th, in respectively 5, 1 and 0.1 v%. After 24 hours, drinking water 
was used for diluting. Samples were taken after each spike for offline 
microbial analysis as validation (Table SI.3). Between contaminations 
with different matrices, recycling was stopped and fresh drinking water 
was used to flush the system for at least 72 hours. 

In the second contamination experiment, smaller spikes were added 
with increasing concentrations, every 2 hours. For these experiments, 
two contamination matrices were used: rainwater (runoff green roof, 
2.48 ± 0.09 × 106 cells/mL) at Dec 10th, in consequently 0.01, 0.1, 1 and 
20 v%, shallow groundwater (FARYS drinking water production plant, 
Oudenaarde, Belgium, 2.88 ± 0.10 × 105 cells/mL) at Dec 11th, in 
consequently 0.01, 0.1, 1 and 10 v%. Between contaminations with the 
different matrices, recycling was stopped, and fresh drinking water was 
used to flush the system overnight. Samples were taken after each spike 
for offline microbial analysis as validation (Table SI.5). 

2.5. Data analysis 

Data of the devices, except for the flow cytometers, was provided in 
Microsoft Excel format, either by remote control or offline data collec-
tion, and was further analyzed in R (v3.6.3). For ATP, outliers (n = 4) 
related to operational interventions at the device were removed prior to 
processing, and for the other devices, the data was processed as such. 

The flow cytometric data was obtained as Flow Cytometry Standard 
(.fcs) files (v3.1) and was processed in R (v3.6.3). FlowCore (v1.52.1) 
was used to import the .fcs files (Hahne et al. 2009). Based on the 
bivariate plot of green versus red fluorescence, bacterial cells were 
separated from background noise, as this is the configuration for the 
most optimal signal and noise separation in drinking water samples 
(Hammes and Egli 2005, Hammes and Egli 2010). A gate was drawn 
manually for each flow cytometer, and was kept constant throughout the 
experiments. For FCM-H, further data processing was done using Phe-
noflow (v1.1.2) to extract the cell concentration, as described by Props 
et al. (2016), and FlowAI (v1.16.0) was used to check the data quality 
and to remove anomalous values in terms of flow rate stability, signal 
acquisition and the dynamic range (Monaco et al. 2016). For FCM-C, 
data processing was performed similarly, but was based on the FL1 
(green) and FL2 (red) channel output. Furthermore, advanced cyto-
metric fingerprinting was performed on the data acquired with FCM-C 
during the minor contamination experiment, using probability binning 
approach of flowFP (v1.44.0), with a model grid with 5 recursions (25 
bins) (Rogers and Holyst 2009). From these fingerprints, principal co-
ordinates analysis (PcoA) and Bray-Curtis dissimilarity calculations 
were performed using vegan (v2.5.6) (Favere et al. 2020, Oksanen et al. 
2019). Resampling to the lowest sample size (n = 16038 cells) was 
performed prior to PcoA and Bray-Curtis analysis to account for 
size-dependent differences. The fresh drinking water samples taken 
before the contaminations with different matrices (n = 26 for both 
rainwater and groundwater) were respectively used for baseline calcu-
lations for dissimilarity comparison (Fig. 4). The Bray-Curtis dissimi-
larity that was assigned to a sample was calculated as the average of the 
Bray-Curtis dissimilarities between that sample and all of the baseline 
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samples of the respective contamination. 

3. Results 

3.1. Baseline determination and response to operational changes 

In the first stage of this study (October 21st – November 18th), the 
devices were used to follow up the operational dynamics of the drinking 
water production plant (Fig. 1). For this monitoring period, a baseline 
threshold was calculated for each device as the average plus three times 
the standard deviation to separate between noise (e.g. operational, 
instrumental) below the baseline, and events, defined as measurements 
above the baseline (Fig. 1 pink, Table SI.1). This baseline threshold was 
chosen as it is a conservative and rigid threshold for event detection. It is 
based on the normal distribution, where events above the baseline will 
only make up 0.13 % of the data (Favere et al. 2020, Howell et al. 1998). 
Even though some deviations from normality were observed using Q-Q 
plots (Fig. SI.3), this approach was chosen as the goal is to define a first 
robust and straightforward screening method for event detection. For 
further applications, the use of moving window analysis (see below) 
and/or transformations could be implemented to increase the sensitivity 
of the method. 

The two flow cytometers, FCM-C and FCM-H, detected respectively 
3.1 ± 0.5 × 105 cells/mL and 2.3 ± 0.5 × 105 cells/mL, whereas the ATP 
concentration was 3.6 ± 1.6 pg ATP/mL. The total activity detected by 
ENZ was on average 53.2 ± 11.9 μU/100 mL, which is in the range of 
expected values for activity after activated carbon filtration (40 - 60 μU/ 
100 mL), as defined by the manufacturer. OPT measured on average 1.6 
± 1.4 × 103 cells/mL, with a high relative standard deviation due to the 
big difference between the baseline values and the peak events. The 
absolute values of the cell concentration detected by OPT are around 2 
log units lower than the total cell concentration measured by the flow 
cytometers. This difference may be allocated to the working mechanism, 
as this device reports correct particle sizes in the range of 0.77 - 3 μm, 
but smaller particles or bacteria may not be detected or classified 

correctly. 
As the measurement frequency was device-specific, the percentage of 

events above the baseline was calculated relative to the number of 
measurements within this period. The flow cytometers (1.44 % and 1.58 
% for FCM-C and FCM-H respectively), and ATP (1.33 %) registered the 
largest percentage of events above the baseline threshold, and ATP 
detected the most independent events in absolute terms. On the other 
hand, OPT and ENZ classified respectively only 0.36 % and 0.64 % of the 
measurements as events, but showed a clear distinction between noise 
and events. After determination of the events above the baseline 
threshold for each device, common peaks (n = 5) were determined as 
events detected by two or more devices. FCM-C detected all common 
peaks, ATP detected four out of five common peaks, FCM-H and OPT 
three and ENZ two. During the monitoring period, ENZ-2 was not 
functioning properly due to crystallization of the reagents at tempera-
tures below 15◦C and the relatively high amount of particles in the 
water. The data was considered to be unreliable, hence, data from this 
device was not taken into account for analysis and discussion. 

In a next step, the events were linked to operational changes. Back-
washing of the activated carbon filters was shown to be related to 
several peaks (Fig. 1 blue, Fig. SI.4 B). Moreover, all backwashing events 
that have occurred in this period were detected by one or more devices. 
Also, interruption of the production process was linked to an increase in 
the microbial concentration, as detected by several devices. Interrupted 
production, meaning that there was no net flow through the installation, 
resulted in an increase of the water temperature as well (Fig. SI.4 A). 

3.2. Response to contaminations and dynamic baseline calculation 

In the second stage of this study (Nov 18th – Dec 11th), the devices 
were disconnected from the drinking water network, and contamina-
tions were added to the vessel in the set-up. In a first experiment, rela-
tively high concentrations of rainwater, groundwater and effluent of a 
WWTP were added with decreasing concentrations. Similar to the pre-
vious experiment, a baseline was calculated to separate noise and 

Fig. 1. Microbial concentration measured by different online microbial monitoring devices (rows) after activated carbon filtration in a drinking water production 
plant. The horizontal line is the baseline threshold for event detection, calculated as the average plus three times the standard deviation for each device during this 
monitoring period. Measurements above the baseline threshold are indicated in pink data points. Operational processes related to these events are highlighted: 
periods of backwashing (blue) and interrupted production (orange). 
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events. However, because the drinking water quality shows long-term 
variations, e.g. a seasonal temperature decrease of 4◦C during the 
baseline measurements, the baseline microbial concentration and ac-
tivity will also differ over time (Nescerecka et al. 2018, Pinto et al. 
2014). This is why during the contamination experiments, the baseline 
was calculated using a moving window analysis (MWA) based on the 

drinking water samples measured before each respective contamination 
(Fig. 2, Fig. 3, Table SI.2) (Marzorati et al. 2008, Wittebolle et al. 2005). 

A similar reaction behavior was observed for all devices and spikes 
(Fig. 2). After each spike, the microbial concentration increased sharply, 
after which an immediate decrease was observed due to the dilution 
with fresh drinking water. Then, the bacterial concentration increased 

Fig. 2. Microbial concentration measured by different online microbial monitoring devices (rows) after activated carbon filtration in a drinking water production 
plant. The horizontal line is the baseline threshold for event detection, calculated as the average plus three times the standard deviation for each device over this 
monitoring period. Events above the baseline value are indicated in pink data points. Contamination was performed with three subsequent spikes (24 h/spike) with 
decreasing concentrations of three matrices: rainwater (blue, Nov 19th – 21st), groundwater (orange, Nov 25th – 27th) and effluent of a WWTP (grey, Dec 2nd – 4th). 
The system was refreshed withdrinking water between different contaminations. 

Fig. 3. Microbial concentration measured by different online microbial monitoring devices (rows) after activated carbon filtration in a drinking water production 
plant. The horizontal line is the baseline threshold for event detection, calculated as the average plus three times the standard deviation for each device based on the 
drinking water samples before each contamination. Events above the baseline value are indicated as pink data points. Contamination was performed with four 
subsequent spikes (2 h/spike) with increasing concentrations of two matrices: rainwater (blue, Dec 10th) and groundwater (orange, Dec 11th). Between the two 
contaminations, the system was refreshed with drinking water 
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again strongly, and this fast regrowth was promoted by a temperature 
increase from the heat of the recirculation pump. This was confirmed 
with independent flow cytometry, on samples taken after 30 minutes of 
recycling (Table SI.3). Overall, the contamination using rainwater 
(collected as runoff from a green roof) resulted in the highest responses 
of the devices, and the groundwater contamination resulted in the 
lowest responses. As shown in Fig. 2, the contamination with effluent of 
a WWTP resulted in cell concentrations similar to the rainwater 
contamination (FCM-C, FCM-H), but resulted in a lower enzymatic ac-
tivity response than the groundwater contamination (ENZ). OPT only 
reacted slightly to the WWTP effluent contamination compared to the 
other contaminations, though still with cell concentrations above the 
baseline (Højris et al. 2016). Due to technical issues, ATP was not 
functioning properly during the rainwater contamination, and FCM-H 
had several downtime periods. 

As validation, the online measurements were compared to plate 
counts from grab samples (Table SI.3). The coliforms and enterococci 
plate counts indicated the presence of a contamination, and showed a 
decreasing trend with decreasing concentrations of every spike. Con-
trary to the results obtained from the online devices targeting the total 
microbial concentration, coliforms and enterococci plate counts indi-
cated that WWTP effluent was the most contaminated, whereas rain-
water was the least contaminated regarding the hygienic water quality. 
The total colony counts were above the upper limit for quantification 
(300 CFU/ 100 mL), as the sampling point was before the chlorination 

step (data not shown). 

3.3. Detection limit for different contaminations of drinking water 

The results from the previous experiment showed that devices were 
able to detect contaminations in a fast and consistent way. However, the 
volume ratio of these contaminations compared to the drinking water 
were relatively high (0.5 – 10 v%), and as refreshment of the drinking 
water was only performed after 24 hours of recirculation, extensive 
regrowth could occur (Fig. 2). Hence, a second contamination experi-
ment was performed by spiking the contaminations in lower volume 
ratios, starting from 0.01 v% and gradually increasing every two hours 
up to 10 - 20 v%. As rain- and groundwater intrusion in the drinking 
water network are two major hazards for drinking water utilities in 
practice, the experiment was focused on these two contaminations 
(Fig. 3). The dynamic baseline was calculated for each contamination 
using a moving window to account for systematic changes in water 
characteristics, as explained above (section 3.2). In this context, the 
baseline forms the boundary between events and noise, and thus, rep-
resents the detection limit of the devices for the different contaminations 
in question. Subsequently, the sensitivity of each device towards the 
different contaminations was objectively quantified as the success rate 
of detection of a certain contamination, calculated as the amount of 
samples with values above the baseline, divided by the total amount of 
samples taken during the respective spike (Table 1). ENZ was able to 

Table 1 
Overview of contaminations detected by the devices. The ratio indicates the samples above the baseline compared to the total amount of samples measured during this 
spike. The color code indicates the success rate of response to the respective contaminations of drinking water (0-25%: red, 25-50%: orange, 50-75%: yellow, 75-100%: 
green).  

Fig. 4. (A) PcoA analysis of the cytometric fingerprints of FCM-C during spikes with increasing concentrations (Dec 10th – 11th). Data points are colored according 
to the respective contamination. Samples taken during flushing with drinking water between spikes are labelled as ‘baseline’. (B) Bray-Curtis dissimilarity of the 
cytometric fingerprints. Samples in grey (n = 26) before each contamination are used for baseline calculation and comparison. Samples in black are used as test 
dataset for contamination detection, in which the Bray-Curtis dissimilarity assigned to a sample was calculated as the average Bray-Curtis dissimilarity between that 
sample and all baseline samples. Contamination was performed with four subsequent spikes (2 h/spike) with increasing concentrations of two matrices: rainwater 
(blue, Dec 10th) and groundwater (orange, Dec 11th). 
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detect contaminations of 0.01 v%, followed by ATP, able to detect 0.1 v 
% of each contamination. The total cell concentration using flow 
cytometry (FCM-C and FCM-H) could detect 1 v% of each contamination 
(Fig. 3, Table 1), and using optical classification, between 1-10 or 20 v% 
of the contaminations could be detected. These results indicate that the 
sensitivity of enzymatic techniques (ATP, ENZ) towards rain- and 
groundwater contamination is the highest, followed by flow cytometry 
(FCM-C, FCM-H) and then the optical technique (OPT) (Fig. 3), or, in 
other words, that a rainwater or groundwater contamination resulted in 
the first place in an increase in enzymatic activity and ATP concentra-
tion. As ENZ was able to pick up all concentrations, its detection limit 
may even be lower than the lowest concentrations tested in this study. 

Additionally, the flow cytometric data obtained by FCM-C was 
analyzed through cytometric fingerprinting from which the phenotypic 
beta diversity (i.e. inter-sample diversity) was calculated using PcoA 
analysis (Fig. 4 A). This analysis showed that the contaminations con-
tained phenotypically different communities from the baseline mea-
surements. Furthermore, time-wise analysis revealed a “boomerang 
effect”, in which increasing concentrations resulted in a gradually more 
phenotypically different community from the baseline (further away on 
PcoA plot), after which flushing with drinking water resulted in a 
gradual change to a phenotypically more similar community compared 
to the baseline (back to baseline on PcoA plot). Both contaminations 
resulted in a similar extent of phenotypic changes in the microbial 
community, compared to the baseline. 

This was also observed in the Bray-Curtis dissimilarity between 
cytometric fingerprints. The Bray-Curtis dissimilarity is a straightfor-
ward parameter expressing the difference between fingerprints, with 
identical fingerprints having a Bray-Curtis dissimilarity of zero. Samples 
taken during flushing with drinking water served for baseline calcula-
tion (0.085 and 0.053 for resp. rainwater and groundwater) and as 
training set (Fig. 4 B). The Bray-Curtis dissimilarity of a sample taken 
during the contaminations was then calculated as the average dissimi-
larity between this sample and all of the baseline samples. This 
parameter was more sensitive than the flow cytometric cell counts as 
such (Table 1). Also, in contrast to the cell concentrations, the Bray- 
Curtis dissimilarity indicated that the groundwater contamination 
resulted in a bigger change in the phenotypic microbial community 
structure than the rainwater contaminations (Fig. 3, Fig. 4 B). 

The online results were validated with grab sample plate counting 
(Table 1, Table SI.5). The heterotrophic plate counts (coliforms and 
enterococci) indicated a presence of contamination, but lacked a clear 
trend. The plate counts were around the detection limit of 1 CFU per 100 
mL, with no enterococci detected in the rainwater contamination. 

4. Discussion 

4.1. Common operational changes affect the short-term microbial 
dynamics of drinking water 

In the first part of this study, we studied the response of different 
online microbial monitoring devices towards common operational 
changes. Similar average values for all microbial parameters have been 
reported in literature for unchlorinated drinking water (Højris et al. 
2016, Liu et al. 2013a, Vang et al. 2014). Backwashing of the activated 
carbon filters was linked to an increase in the microbial concentration 
and/or activity, as detected by several devices (Fig. 1, Fig. SI.4 B). 
During this process, the water is sent through the filter in an up-flow, 
and the bed is expanded (± 30 %) for removal of biomass and parti-
cles. The microbial community in activated carbon filters is known to 
shape the microbial community of the drinking water, and the influence 
of backwashing on the biomass in the filter has been reported by several 
authors (Gibert et al. 2013, Lautenschlager et al. 2014, Lohwacharin 
et al. 2015, Pinto et al. 2012). After backwashing, filter ripening, i.e. a 
stabilization period of around 10 minutes, is necessary before recon-
nection to the drinking water supply, to prevent the loss of particles in 

the final drinking due to the increase in flow (Suthaker et al. 1998). Still, 
in this study, all events of backwashing were detected by one or more 
devices. Backwashing a filter with a higher flow (e.g. change from -800 
m3/h up to 500 m3/h at Nov 17th), resulted in detection by more devices, 
indicating that abrupt changes in the flow can cause short-term in-
creases in microbial abundance and/or activity. Likewise, an increase in 
turbidity of the filtrate after backwashing has been reported in literature 
(Ahmad et al. 1998). 

Interruption of the production process also increased the microbial 
activity and/or concentration (Fig. 1). During interruption, the water 
remained stagnant in the installation, and a slight, but clear increase 
(order of 0.1 - 1◦C) in water temperature was observed (Fig. SI.4 A). The 
increase in microbial abundance and/or activity can hence be explained 
by a combination of the stagnant water with increasing temperature 
facilitating growth, and, as previously mentioned, detachment of mi-
croorganisms by a sudden increase in flow during start-up (Besmer and 
Hammes 2016, Liu et al. 2013b, Nescerecka et al. 2018). Overall, using 
these online devices, the short-term dynamics of the microbial com-
munity were quantified, independent of their technology. This temporal 
resolution and short time-to-result is a straightforward added value 
compared to the grab sample plate counts. This way, online microbial 
monitoring techniques can assist in optimizing the operational perfor-
mance of a production site, and can be implemented as first barrier for 
safeguarding the drinking water quality, to optimize operational per-
formance, or can serve as guidance for more targeted plate count 
sampling. 

4.2. Data analysis and management of early-warning systems for 
detecting contaminations 

One of the major challenges during online monitoring is the handling 
of the immense amount of data that is being generated. In this study, we 
have first proposed the use of a straightforward and conservative 
baseline for operational event detection using online microbial moni-
toring techniques. This approach has shown to work for detection of 
events linked to operational changes, when combining the data gener-
ated by all monitoring devices and operational data (Fig. 1). As 
mentioned above, the online microbial monitoring techniques can in 
this respect serve as a control parameter for drinking water quality. 

When going a step further, namely implementing these techniques as 
an early-warning system, the calculation of a dynamic baseline is 
necessary for anticipating to gradually changing water quality (Fujioka 
et al. 2019). This approach was applied using a moving window during 
the contamination experiments (Fig. 2, Fig. 3). The results from the first 
contamination experiment showed that these devices react clearly and 
in a similar way to different contaminations and could hence be 
implemented as early-warning systems. Nevertheless, these simulated 
contaminations were unrealistically high in concentration. Therefore, a 
second contamination experiment was performed with a lower range of 
relevant contaminations. In practice, intrusion of rainwater and 
groundwater in the network can occur through bad connections by 
consumers or pipe breaks and leaks (Vanysacker et al. 2019). The results 
from this experiment indicated that enzymatic techniques (ENZ and 
ATP), together with flow cytometric fingerprinting (Bray-Curtis 
dissimilarity) were able to pick up contaminations of rain- and 
groundwater of 0.01 - 0.1 v%, or 100 mL to 1 L in 1 m3, a concentration 
that can realistically be achieved when wrongly connecting a rainwater 
pump without safety valves (Table 1) (Vanysacker et al. 2019). Hereby, 
it should be noted that the actual detection limit of ENZ may even be 
lower than the concentrations tested in this study. The low detection 
limit of monitoring devices based on enzymatic activity was also re-
ported in a study of Tatari et al. (2016). Also, Vang et al. (2014) reported 
that detection of intracellular ATP was more sensitive towards 
contamination in drinking water than the total direct cell counts, as the 
latter includes both viable and non-viable cells. Flow cytometric 
fingerprinting may overcome this limitation, as demonstrated by the use 
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of the Bray-Curtis dissimilarity as sensitive and straightforward 
parameter derived from the cytometric fingerprint. Its use in event 
detection has been demonstrated previously (Favere et al. (2020)), 
though in the current study we demonstrate its sensitivity and added 
value compared to total cell counts. 

4.3. Practical comparison for implementing online microbial monitoring 
techniques 

This study is, to our knowledge, the first to present a scientific and 
practical comparison of a wide range of online microbial monitoring 
techniques on a full-scale drinking water production plant. A summary 
of the characteristics of the devices, based on our experience obtained 
during this study, is given in Table 2. As FCM-H is a prototype used in 
research, the maintenance time is the highest of all devices, with the 
maintenance requiring an in-depth knowledge of the device. Also, the 
data analysis requires advanced programming skills, whereas the data 
obtained from ATP and OPT is the easiest to extract. OPT and FCM-C are 
the most robust systems, requiring little maintenance and allowing full 
remote control. FCM-C and ENZ have a highest sampling frequency of 
respectively 30 and 15-20 minutes, though most devices allow for 
measuring every 10 minutes. The CAPEX of all devices is comparable, 
except for FCM-H as this machine was originally developed for research 
applications. The OPEX depends mainly on the requirements of chem-
icals. This is the reason why OPT is the least expensive technology, as it 
does not use any chemicals. For the other techniques, the price of the 
consumables is comparable, and can usually be suppressed with bulk 
orders. In comparison with conventional plate counting, the cost per 
sample of the online monitoring devices is low, due to the requirement 
of less labor, consumables and infrastructure (Van Nevel et al. 2017). 
Furthermore, flow cytometric fingerprinting is an added value to the use 
of flow cytometry, allowing sensitive and straightforward detection of 
contaminations, even on robust sensors such as FCM-C. Also, finger-
printing shows if an increase in cell concentration is related to a shift in 
the microbial community or not, thus indicating if this event is resulting 
in a change in microbial water quality or not. Different strategies have 
been developed for research purposes already, however, straightforward 
implementation of this data analysis would be of great added value for 
the industry, in combination with easy-to-interpret visualization of the 
data for operational control (Props et al. 2016, Rogers and Holyst 2009, 
Safford and Bischel 2019). 

Overall, the choice for implementing a certain technique depends 
mainly on the type of application. For example, unmanned water towers 
require a more robust technique with less maintenance, that are 
compatible with pressurized streams, such as OPT or FCM-C. On the 
other hand, high-risk production steps in e.g. drinking water production 
or wastewater reuse facilities need very sensitive techniques for safe-
guarding the microbial water quality, so in this case, implementation of 
ATP or ENZ may be more suited. Also, it should be noted that the 
detection limit of a certain technique may vary according to the drinking 
water characteristics and the used device (Hammes et al. 2008, Vang 
et al. 2014). For example, Hammes et al. (2008) demonstrated that ATP 
measurements after ozonation resulted in severe interferences by 
extracellular ATP. Furthermore, a combination of different techniques 

can provide a more holistic overview of the microbial dynamics. For 
example, the combination of ATP and flow cytometry has already been 
reported by several authors, as this combines quantification of the cell 
concentration with the activity of the biomass, which can result in 
complementary information of the microbial community characteristics 
throughout e.g. drinking water production steps or the distribution 
network (Hammes and Egli 2010, Lautenschlager et al. 2013, Prest et al. 
2016, Safford and Bischel 2019). Finally, as all monitoring systems 
require a certain level of knowledge, operational skills, data handling, 
and come with a certain investment cost, implementing biological on-
line monitoring systems becomes most interesting when these systems 
are strategically implemented at certain critical control points (CCP) in 
the production process. Because of the speed of analysis, the results are 
available faster and more data points are available. As such, the online 
monitoring systems allow to follow the production process continuously 
and to analyze data trends in relation with the operational conditions. 
This way, they can serve as early-warning systems, in assistance and 
complementary to the more targeted routine sampling. 

5. Conclusion 

As biostable drinking water production and water reuse will become 
more and more important, online microbial monitoring of drinking 
water during treatment and distribution is a fast and sensitive tool to 
ensure safe drinking water. In this study, it was concluded that the tested 
online microbial monitoring devices could detect abrupt changes such as 
backwashing of activated carbon filters and interruption of a full-scale 
production process. A dynamic baseline calculation allowed sensitive 
separation between noise (e.g. operational, instrumental) and contami-
nations of rainwater, groundwater and effluent of a WWTP. Enzymatic 
analysis, ATP measurement and flow cytometric fingerprinting showed 
to be the most sensitive techniques for detection of rain- and ground-
water contaminations, even more sensitive than plate counting. How-
ever, optical classification and flow cytometric cell counts are more 
robust techniques, requiring less maintenance and providing a direct cell 
concentration. The main message of this study is hence that the choice 
for a certain device or technique will depend on the type of application 
and is a balance between sensitivity, cost and maintenance. Further-
more, a combination of several techniques (e.g. ATP and FCM) may be of 
added value as this may provide a more holistic overview of the mi-
crobial dynamics. In general, the strategic implementation of online 
microbial monitoring as early-warning system will allow for intensive 
quality control by high-frequency sampling as well as a short event- 
response timeframe. 
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